Теория инноваций и инновационных процессов. М. В. Райская

Читать онлайн.
Название Теория инноваций и инновационных процессов
Автор произведения М. В. Райская
Жанр Учебная литература
Серия
Издательство Учебная литература
Год выпуска 2013
isbn 978-5-7882-1491-7



Скачать книгу

align="center">

      2

      Парадигма – образец, тип, модель.

      3

      Аньшин В.М. Технологический бизнес: формы, проблемы, перспективы: аналит. обзор. М.: ВНТИЦ, 1993. 60 с.

      4

      Rothwell R. Successful industrial innovation // R&D management.− Oxford, 1992. Vol. 22, N 3. P. 222.

      5

      Егорова М.В. Моделирование инновационной восприимчивости экономики региона. Казань: Изд-во Казанск. ун-та, 2006. С. 15.

      6

      Максимов Ю. и др. Инновационный мультипликатор и экономический рост // Инновации. 2004. № 5.

      7

      Фостер Р. Обновление производства: атакующие выигрывают. М.: Прогресс, 1987. С. 10.

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAKxAq4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKbI23ndgAZ54/M1C14scbM7BVUbmPZR69OnvQBYor5v+OX/BXT9mv9ne9ez8T/ABo8Bx6nG/ltpemX/wDbGpq2cYNpZia468cx9Qa8/P8AwVs8SfFRGT4N/swftAfETzButdS1nSIfBmi3a9mS51R4pGXocpA3tkggAH2hUcjsknbZj16n8v618Yt49/b3+LAZtL8A/s3fB+1kUDbr/iPUvFV/D6kJaQ20R4IGC/UHsRSD9gj9pb4oXG34h/tmeKrGzlG59N+HngrSvDoiPol1cLd3H4kjjHGckgH2aJWLc/KvQd+fp/8AXrA8cfFzwz8MrBrjxJ4k0Dw7CvJl1O/htUA9cu4AHvmvlWP/AIImfDfxHI0fjv4mftKfE2FhiSDxL8WdW+zy+xjtJoFA68KoHPSuh8Cf8EOP2R/AF79ptvgD8PdSuOP3mu2J1xmx3JvGmJPueaAOo8Vf8FZP2YPBEki6l+0V8E4ZY2CvAPGmnSTIf+uaTF/0rz+//wCC/X7IdlK0cPxu8PavIquwTSbG+1Njt9reByc9sDn3r3/wh+x38I/h9s/sH4W/DvQxG29Bp/hyztgrYAyNkYxwB+Vd/pukWuj2yw2lvDaxLwEiQIo/AUAfHc//AAXk/Z5klhTTL74oa88p+5YfC3xMz8gH+KwUHr29qNZ/4LjfCfTNNe4h8GftCXzLjEMPwj19ZJMnHHmWyL/49X2UIFVw20bhwGPJ/OuB/ac/aM8NfsmfBvUvHnjC5urTw7o89pBdS28JmkQ3N1DaxYXqcyzoD6A0AfN9/wD8FtPBukaWt9efBf8Aats7KQrsuJ/g9rKx4PfcYgPyJq6//Bbv4QW0O+fwz8eoVxlmb4R+ItqcA8kWhHftkV9f24LxKzbg2ASMnjj/AD1p4XFAHxpF/wAF7/2aIbWGbUvFHjjRfMdUddQ+G/iS3SEkkZeRrDYo4PO6tDw9/wAF5v2QfEV0sK/H3wHYSsxUJqc8umsuODuFwibfxxX10sCocqu3nPHAJ96z9d8HaT4ph8vVNL0/Uo+63VukyntyGBoA8g8H/wDBSz9nf4iuE0D4+fBnWJ2AIhs/GmmzyLn1RZt38jXruh+KbHxNYx3Wm6hY6havgie1lWeJh7Mp/XkV5t4z/wCCf3wH+I0br4g+Cvwn1xZF2N9v8I2FzkZJx88R7kn8a8e8Q/8ABB39kvVtSkvrX4O6T4Yu3O43HhjVNQ8PSJ/umxuIcAf3fu+1AH1xHOSM/KynoQQR+fH8qfCWK/Njrxg5yPyFfGg/4I36P4b48E/tCftW+Bo4jmC3sfiVcanaQ+n7jUEuUK9sEZ461Gn7Kv7Y/wAKw0ng/wDao8K+PYIG2Q6b8Q/hvb8qOz3elzW7k9OTHnr7AAH2lRXxaP2gf24vhPL5fiT9n34P/FWHJJn8BfECTSJwo9LfVLcIW4JwZwOQM5Bpz/8ABbjwP8NML8ZPhf8AHb4GbflkvvE/gm5u9H35Iwmoaf8AaYGHHUsvHJwCKAPtCivJfgH+3V8G/wBqWCNvh38U/APjKSb7tvpGu2txdR8A4eFXMiMARlWVWGRkCvVDdEN/Cq5wS+V/p1oAmopsedvzfyp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUcrlD3/LIoAkpjuQ/VenQjr+NfLPxx/4LE/Bj4T+O5vBfh3VNY+MHxIj3D/hDvhxpr+JNXjKnD+cIT5NuE/i+0Sx4Bzk1yAk/bQ/bGAZf+EM/ZM8HXX3crF4y8aSJ1yR8unWhdSP+fhkOc5wKAPrjx98T/D3wr8LXmu+KNe0fw1ounL5l1f6peR2VrbL/eeWYqir7kgV8r6x/wAFnfBXxA1aTSPgP4K+JH7RmsLIYBceDdFaPw7DKvVZtZuzDYovIO9JZeo4NaXw7/4Iv/BXTfFFr4l+Ilt4i+PHjG2IZNZ+Jeqv4g8l85zDaSYsrcBtzAQ26EFjz0r6s0zRbPRbCG1s7W3tba3QRxRRRhEiUdFUDgAdgOBQB8e/Z/23/wBpCH95efBn9mrRbhAytbJN488SQZP3SXFrp6tjuBOAexqH/hyx4B+Jk6XXxx8ffFz9oK53ib7H4z8UywaEk3do9LsRb2o/3XjfjAyQBj7Q8lcn5V+Y5PHU9P6U7HNAHnfwP/ZJ+Fv7Ndgtv8Pvhz4G8ExqNv8AxI9DtrBn4AyzRoCx4GSSScCvQhEq9Bt5zxxmlVAnQdeT70tADfLXHse1BjVjzzTqKAE28d/zpQoXoOvJ96KKACiiigAr4/8A+C8ny/8ABLrx8wyrLq3hnBBwf+Rj0zvX2BXx/wD8F5f+UW/j/wD7C3hn/wBSPTKAPr6Ndq/z96dSJ92loAKKKKACkKBvxGMjrS0UANEYUfxfiTQ0SufmVW7ZIp1FADTErHkZ9PalKBlwRkHgg96WigDwH9oT/gl5+zv+0/JJceOPg34B1i/fk6mmmR2WodzxdwbJ1wSTkOMEmvI4P+CUni74GW+74B/tMfGP4bRQgLbaJ4kuIvHXh6OMZIiS31AG4Re37u6UgdACST9slQWz39aNuc+/rQB8TP8AHn9tr9nOQ/8ACYfBn4afHbQ4yT/anw68QPoeriIDl303UzseTAJ8uG55yADXSfCP/gtT8C/iB4qh8LeK9a1r4L+OpztXw18TNJk8L3zN0xG9xi3ly2VAimckg47V9aGFCMbVwRgjHUVzfxW+C/g/47eEZ9A8b+FvD3jDQbnPnadrenxX9rJ9YpVZT+XFAG5YanHqdrHNBIk0Uyh45EO6N1I6hhkH8CasRNuHXdz1AxXxne/8EcvD/wAIbyS//Z5+J3xH/Z71NmaWLTtF1H+2PDJcnkvo195sAU8ArbmDhRgjnNdf2ov2qf2R2MPxa+D9j8bPCtuQp8XfCNidVROm+50K6YSFzjcfsk8oUEfKelAH2tRXhf7K3/BR/wCDP7Z9zcWPw/8AH2j6j4gs8i88P3gfT9c05hjcs1hcCO4TaeCSmCQcE4r3KM5Hf8RQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKr32pQ6bBNNcSxww28ZlkkkYIkaDJZixwAABknPAoAnJ56/hVHxD4hs/CejXWpapfWWm6bYQma5uruZYYbdFBLO7sQqqBySTjHpXyD43/4Kzn4v+MtQ8G/sv8Agi8+PXiaxmayvfEENx9h8D6DMv3vtOrMpWZkBVjFaLMxDKMqTVLw7/wSs1r9pbWrfxJ+1p4/k+MF5FKLi38C6XHLpPgHSXBDKBZBvM1BlOf3l60meAEXbigCbxD/AMFgofjdr114b/Zc+HniH9oTWoHMEviG0YaV4H06QHDedrEwEcpUYIW1WYtyBg1m/wDDtr4oftg7b79qz4vXWu6Dc8yfDT4fmfw54SA/543VxuF/qCeokeNCf+WYHX7S8PeF9M8F6FZ6XpOn2el6Xp8Iht7W0hWCC3jXGFSNAFUDsABjtVlvLSRvmVdv3ipxtzk8+nrzwc0Acp8Df2c/AP7NXgiPw18PvB3hvwXoMDArZaNYRWcTEAYZxGo3N/tNknuTXaGCNhyi9d3Tv61CsjIhXupxwAMfXqOn061LA5dfmIJBwcDH6dqAHbcfzpelFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfH/8AwXl/5Rb+P/8AsLeGf/Uj0yvsCvj/AP4Ly/8AKLfx/wD9hbwz/wCpHplAH1+n3aWkT7tLQAUUUUAFFFFABRRRQAUUUUAFFFFABRiiigBNgP8A+ukeBJAQyqykYIPIxTqKAPFf2q/+Cf3wd/bPgjX4ieA9C13UrNVNnrKqbXWdMIYlXt76EpcwFTkqUkAz2rwn/hQ/7V37DwWT4V+PLX9o7wHbjC+DviRcrZeJbSIdFtNdjXZO2OMXyHhf9bk4H280YZs/16UjW6OeVzxjn0/+v+tAHyx8A/8Agrn8Nfit8Rrb4f8AjO38RfBH4q3B2w+DvH9l/ZF5qDAgf6HcMTa3qs2Qv2eV2K/NgZFfU0TmRc7lYZyCOhGK4b9ob9mb4f8A7VXw4vPCPxI8H6D408N3wO+x1a0W4RG5xIjH5opBn5ZEKupAIIwK+Ux+x9+0J+wK63H7PPjz/hanw+tSSfhl8SdReS5tYv8AnlpOuEPNEcYCxXnmxjBwybqAPulTnvmivmH9l7/gql4B+PvxHX4deJdP8Q/CH4wIheTwR40tBYX1wASpeyl3GC+j3BgHt5HPyElVr6atpfOViGDLuIBByD+n+NAElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTXJBBz8o6+9ADqr3M0kc67cEMOFxznPXvx0HHTOTntynxy+PnhD9mr4b6h4x8feJdF8H+FdJj33mp6teJbQRZ4VQT9526Ki5Zm2hQScV8eR/Gr48/wDBVGRrf4YW/iD9nn4C3gxN491awWHxl4stjkEaVYzKfsMTA5S7uFMhVg0cYIzQB67+1X/wU+8G/s5/EGH4d+H9N1z4tfGbUozLYeAvCMS3WoqmcedeSZ8mxtxlN0tw64DblRsEV5jD+wL8U/2/rhdU/as8VWtn4RZxLbfCDwTeyw6Eqj5o11W/G2fU35G6IGO3yoYKQxFfRv7IX7Fvw3/Ys+Hc2gfD3QU09b+b7Rq2qTzNdaprtzjBuLy7cmW4lP8AeZjjkAKOB6utuiR7Qvy9h6f5/SgDI+HvgLQ/hl4M0/w/4b0fTdA0PSoRb2en2FqltbWkY6JHGgCqoz2/nmthYlR2ZVwzctjuemT+Q/KhIliztXG45J7k4xz+Qp1ADTCpVhtHzZB981+d/wC394aF5/wXD/Y40VdW8TWmi+NLHxfceINMtNcvbex1c2OmRyWhnhjlWNhHKwYDHzHAbIwG/RByw+77degr85/+Cn/wR8cfGj/gqt+yjrvhvTfGVj4R8E2nimx8WeKdL0uWYaJDqdlFbIsUi/NHJKFkj89AxtxIspACg0AcT+3l49k+MH/BXT9lLTNFuNasvh9rXirW9F1i8sNeurS38W3NhYGR4XhidUkt7aZUiDkHdKs6HOzJ+yfjN/wUB8MfArWfGFja+H/GfjK1+FunJqXjSXw5aW1zF4VtmhMy+f5s8TySiANMYLZZ5RGqsUUOgbwD9vr4M6zZ/t5fsUX3gnwD4kvvBfwb1XV11mbR9Hkaz8P2Nzp0Nnb7cD59pBGyISMqxsWA4qn4T8b/ABS/4J5/t0fHjT7j4K/FD4seA/jV4htvGfhTWvB9nbXX2S9ksbazurC9a4mhS1VXtrfy5HYJtOSTtYAA+oNT/bx8J3//AAg9v4Ls9f8AiRq3xC8PR+LtH0zQYbeO6fRHWMrqUxvZbaO3hZpoUHmusjM+FjbZLsyfC3/BSDwj8R/2VPDnxf8AB/h/xt4v8O+JtZt9BhsrOxgstStLybUl0tYZobyaHYy3rCFjuIU5YkICy/O/xq1j4x/sff8ABRHw/wDHK7+FPij4q+EfiD8NrTwZ4r0/4e241XUvCms2l7cXUMkMUro0lq4upo2Y7RuQuzL8sb+ufEv4p+PPjfo/gHwbqnwf8ZaDqPi7xDo/igTi3t7jS/C+n6Zrtjdm31K5WZlW/e2tmcRxo6B3WJXfaXYA6D4Z/wDBSrwv448ffF7w5rfh/wAXeALn4D6dbah44u/EK6d9k0dLi0F5CPMtbu4DlrfMuYw6qAVYq+ENzw1/wUU8Pal+0X4R+GPiDwr448BeIPiJp97qXg+XX7az+yeKIrRFlnEBtrmaSOZInSQw3KwSBGORuG0fInxP/Ys+IP7TPxK/4KNaDY6Lrnh3/hd2k+HE8G6vqVjLZ2OsS2WhpazIJHUiNDcRrGwfJKFjgjkd5+y7+0XFrVnp3irxt+yPN8CdW+Fem3etePPFev8Ahixg03RUgtJhcf2LPbO9zd+a4Yh0jCCASFi7NGsoB61+0B/wVX0n9m7RPG2seIvhV8Wo/D/gPxDa+GNS1aCDR5bc3l0LU23lR/2gJpo5Pt1qNyRnBl2kBo5RH6T48/bAsvC3jqz8HaZ4X8V+KvHj6KPEF/4b0Y6c17otqzbEN1JPdQ26mSQPHGiys0pilZMpG7r8N/8ABQb4i33x4/4JzeOtU8N+BfjBqPiDxn4/0HxYNBl+H+tW81nY2Oo6UymQNbDav9n6YJW2B2EkhQZwRXp3ws1DWPhx/wAFHfEHx30nT/EXjr4G/tL/AA/8PT6Zruj6Nc6hLoc1jHK0EMtlGn2lILq3uzIsvl/JK5R4x96gD1LxR/wVw+HOifsvaN8XtL0vxh4n8K6tr0fhaaDT7GCHUdG1Z7xbEWN5BdTwPFMLl1jbgqp+YtsZXPSaD/wUj8ASN8WLXxGniDwPrfwO0dfEPjPSdcs0+1aZpz20lyl0jWzzQ3EbRwy8wSOQ8e0gblz8RfGv9h7x14T/AGFfiYtn4R8U6h4i+N/7RNv8URoWlQyS3ujaZ/bFjOfMMR/cz/ZLESuFIZXfYCWSt3wL8Gvjp8AfjB+1R4j+Cvg3WvEXhzxZ4FS/8O3/AMSHS48Qa74qtg8Mdqjzn7bLYxW7OEjvSqrLJtjKLNIzAH138Hf+Ci2gfFn4vaZ4HuPCHjzwn4k8ReFZPGnh611u2sV/4STS0eONpbdoLqURSB5ocw3RilAcEqMMV5Nf+CvvgmP9lX4kfGK48F/Ei18I/CjXrnw94hEtvpouoLi0l8m7aOMXjCWOGUCMlGJcsPLDgEr87fALQvHlx/wUM+AXxSk+E/x1bTLn4bax4b8Ta14rt4jqEOpPPp8rSTQfaP8ARIswS7Y1jijclvIhYHnzXxX+xz4w8c/8Emv2rPD6+