Название | Метафизика опыта. Книга II. Позитивная наука |
---|---|
Автор произведения | Шедворт Ходжсон |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 0 |
isbn | 9785006424227 |
18
Для более полного обсуждения этого вопроса я бы отослал вас к моей «Философии размышления», глава VIII. (Vol. II., pp. 67—121), а также к моему Аристотелевскому обращению за ноябрь 1893 г., «Концепция бесконечности», опубликованному в. Proceedings of the Aristotelian Society, Vol. II., No. 3, 1894, хотя в последнем есть некоторые утверждения, которых я теперь, пожалуй, не склонен придерживаться.
19
Эти восемь областей – восемь пирамид, каждая из которых состоит из трех сторон и основания (основание находится в бесконечности) и имеет общую вершину. Чтобы представить себе это в воображении, возьмите, скажем, апельсин и разделите его на две половины по горизонтали, причем горизонтальное деление обозначает первую из трех плоскостей, о которых говорилось выше. Затем разделите его на две половины по вертикали, сделав разрез под прямым углом к направлениям Q’iyht и left; и снова на две половины, сделав разрез под прямым углом к направлениям forward и backwards. Если взять верхнюю половину апельсина, образованную первым или горизонтальным разрезом, то очевидно, что теперь она состоит из четырех цельных четвертей или квадрантов, отделенных друг от друга двумя вертикальными разрезами, о которых уже говорилось, и от нижней половины апельсина первым или горизонтальным разрезом. Нижняя половина также состоит из четырех точно таких же четвертей; всего их восемь; таким образом, получается весь апельсин. Наконец, представьте, что поверхность, или поверхностная граница, апельсина удалена, в результате чего восемь его четвертей открыты в направлении их оснований и от их общей вершины в центре апельсина, и вы получите образ бесконечного или безграничного пространства, исчерпывающе отображенного тремя измерениями.
20
Что касается того, что расстояние между любыми двумя точками всегда уникально и может быть представлено только прямой линией, и вытекающей отсюда необходимости, которой подчиняется вся геометрия, принимать прямую линию в качестве одного из своих конечных оснований или аксиом, см. замечательную работу «Априори в геометрии» достопочтенного Бертрана Рассела, прочитанную в Аристотелевском обществе 30 марта 1896 года и напечатанную в его Трудах, том III, Я хотел бы также обратить внимание на «Эссе об основаниях геометрии» г-на Рассела, Кембридж, 1897 г., работу, которая попала мне в руки только тогда, когда настоящий раздел уже находился в печати.