Название | Алгоритм имитации отжига (АИО). Формула AGI |
---|---|
Автор произведения | ИВВ |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 0 |
isbn | 9785006256149 |
– Функция fy (BC, DE) описывает значимость влияния базы знаний (BC) на модуль развития знаний (DE). Она может основываться на показателях или измерениях, отражающих сходство или вклад BC в функционирование DE.
Числитель и знаменатель формулы AGI объединяют в себе взаимодействие и вклад различных модулей и систем в достижении искусственного общего интеллекта. Путем оптимизации параметров искусственного интеллекта и базы знаний в формуле AGI можно достичь более высокого уровня искусственного общего интеллекта и повысить эффективность работы системы AGI.
Основные принципы алгоритма имитации отжига
Объяснение основных принципов и идей алгоритма имитации отжига
Алгоритм имитации отжига (АИО) был разработан вдохновленным термодинамическим процессом отжига в металлургии. Основной идеей этого алгоритма является постепенное изменение решений с учетом их качества и температуры в процессе поиска оптимального решения.
Основные принципы и идеи АИО включают:
1. Рандомизация: алгоритм использует случайные изменения в текущем решении для получения новых вариантов. Это позволяет избегать застревания в локальных оптимумах и повышает вероятность нахождения глобального оптимума.
2. Постепенное уточнение: АИО начинает с высокой температуры, на которой решения принимаются с большей вероятностью, включая и худшие. С течением времени и снижением температуры, вероятность принятия худших решений снижается, и алгоритм сконцентрирован на уточнении решений.
3. Функция стоимости: для оценки качества решений используется функция стоимости, которая определяет, насколько хорошо текущее решение решает задачу оптимизации. Чем меньше значение функции стоимости, тем лучше решение.
4. Охлаждение: процесс постепенно снижает температуру, что приводит к уменьшению вероятности принятия худших решений. Охлаждение может быть реализовано различными способами, например, линейным или экспоненциальным убыванием температуры.
5. Вероятность принятия худшего решения: при понижении температуры, алгоритм может все еще принимать худшие решения, но с меньшей вероятностью. Это позволяет избегать застревания в локальных оптимумах и обеспечивает исследование пространства решений.
6. Процесс останова: алгоритм имитации отжига продолжает работу до достижения определенного критерия останова, например, определенного числа итераций или достижения требуемой точности решения.
В результате применения этих принципов и идей, алгоритм имитации отжига предоставляет эффективный способ поиска оптимальных решений в задачах оптимизации, особенно в тех, где есть множество локальных оптимумов и нет аналитического пути к глобальному оптимуму.
Введение в понятия температуры, охлаждения и приемлемости решения
Введение