Название | Искусственный интеллект. Машинное обучение |
---|---|
Автор произведения | Джейд Картер |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2024 |
isbn |
Примерами задач классификации, решаемых с помощью обучения с учителем, являются определение категории электронного письма (спам или не спам), классификация изображений (например, определение, содержит ли изображение кошку или собаку) и определение типа опухоли на медицинских изображениях.
В случае регрессионных задач, также относящихся к обучению с учителем, модель обучается предсказывать непрерывную переменную на основе имеющихся данных. Например, модель может быть обучена предсказывать цену недвижимости на основе характеристик домов, таких как количество комнат, площадь и местоположение.
Одним из ключевых преимуществ обучения с учителем является возможность получить точные предсказания для новых данных, если модель была правильно обучена на обучающем наборе данных. Однако важно обращать внимание на качество данных, правильное выбор признаков и модели, чтобы избежать переобучения или недообучения модели.
Давайте рассмотрим пример задачи классификации с использованием обучения с учителем: определение спама в электронных письмах.
Задача: Определить, является ли электронное письмо спамом или не спамом.
Обучающие данные: У нас есть набор обучающих данных, который состоит из множества электронных писем, каждое из которых имеет метку о том, является ли оно спамом или не спамом.
Признаки: Каждое письмо представлено набором признаков, таких как слова, фразы, частота встречаемости определенных слов или символов. Эти признаки могут быть представлены в виде векторов или числовых значений, например, с использованием метода "мешка слов" (bag of words).
Модель: Для решения задачи классификации мы можем использовать алгоритм, такой как наивный байесовский классификатор или метод опорных векторов. В данном случае, давайте выберем наивный байесовский классификатор.
Обучение модели: Мы обучаем наивный байесовский классификатор на обучающем наборе данных, подавая на вход признаки (тексты писем) и соответствующие метки (спам или не спам). Модель анализирует признаки и на основе обучающих данных учится определять, какие слова или фразы чаще встречаются в спамовых письмах, а какие – в нормальных.
Тестирование модели: После обучения модели мы можем протестировать ее на отдельном тестовом наборе данных, который не использовался в процессе обучения. Мы подаем электронные письма из тестового набора на вход модели, и она предсказывает, является ли каждое письмо спамом или не спамом.
Оценка модели: Мы оцениваем качество работы модели, сравнивая ее предсказания с известными правильными ответами из тестового набора данных. Мы можем использовать метрики, такие как точность (accuracy), полнота (recall), точность (precision) и F1-мера, чтобы оценить производительность модели.
Применение