Искусственный интеллект. Машинное обучение. Джейд Картер

Читать онлайн.
Название Искусственный интеллект. Машинное обучение
Автор произведения Джейд Картер
Жанр
Серия
Издательство
Год выпуска 2024
isbn



Скачать книгу

обычно представляет собой целевую переменную, которую модель должна научиться предсказывать для новых данных. В основе обучения с учителем лежит идея "учителя", который предоставляет модели правильные ответы, по которым модель может корректировать свое поведение.

      Примерами задач классификации, решаемых с помощью обучения с учителем, являются определение категории электронного письма (спам или не спам), классификация изображений (например, определение, содержит ли изображение кошку или собаку) и определение типа опухоли на медицинских изображениях.

      В случае регрессионных задач, также относящихся к обучению с учителем, модель обучается предсказывать непрерывную переменную на основе имеющихся данных. Например, модель может быть обучена предсказывать цену недвижимости на основе характеристик домов, таких как количество комнат, площадь и местоположение.

      Одним из ключевых преимуществ обучения с учителем является возможность получить точные предсказания для новых данных, если модель была правильно обучена на обучающем наборе данных. Однако важно обращать внимание на качество данных, правильное выбор признаков и модели, чтобы избежать переобучения или недообучения модели.

      Давайте рассмотрим пример задачи классификации с использованием обучения с учителем: определение спама в электронных письмах.

      Задача: Определить, является ли электронное письмо спамом или не спамом.

      Обучающие данные: У нас есть набор обучающих данных, который состоит из множества электронных писем, каждое из которых имеет метку о том, является ли оно спамом или не спамом.

      Признаки: Каждое письмо представлено набором признаков, таких как слова, фразы, частота встречаемости определенных слов или символов. Эти признаки могут быть представлены в виде векторов или числовых значений, например, с использованием метода "мешка слов" (bag of words).

      Модель: Для решения задачи классификации мы можем использовать алгоритм, такой как наивный байесовский классификатор или метод опорных векторов. В данном случае, давайте выберем наивный байесовский классификатор.

      Обучение модели: Мы обучаем наивный байесовский классификатор на обучающем наборе данных, подавая на вход признаки (тексты писем) и соответствующие метки (спам или не спам). Модель анализирует признаки и на основе обучающих данных учится определять, какие слова или фразы чаще встречаются в спамовых письмах, а какие – в нормальных.

      Тестирование модели: После обучения модели мы можем протестировать ее на отдельном тестовом наборе данных, который не использовался в процессе обучения. Мы подаем электронные письма из тестового набора на вход модели, и она предсказывает, является ли каждое письмо спамом или не спамом.

      Оценка модели: Мы оцениваем качество работы модели, сравнивая ее предсказания с известными правильными ответами из тестового набора данных. Мы можем использовать метрики, такие как точность (accuracy), полнота (recall), точность (precision) и F1-мера, чтобы оценить производительность модели.

      Применение