Название | Уникальная формула и алгоритм в квантовых вычислениях. Открытие новой парадигмы |
---|---|
Автор произведения | ИВВ |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 0 |
isbn | 9785006201774 |
Описание операции $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$
Операция $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$ представляет собой операцию сложения по модулю 2 между битовой последовательностью входных данных $\boldsymbol {x} $ и заданным набором параметров $\boldsymbol {p} $. В этой операции каждый бит входных данных $\boldsymbol {x} $ складывается с соответствующим битом параметров $\boldsymbol {p} $, а затем полученная сумма берется по модулю 2.
Для выполнения операции сложения по модулю 2 между двумя битами $x$ и $p$, используется таблица истинности следующего вида:
|x|p|Result|
|-|-|–|
|0|0| 0 |
|0|1| 1 |
|1|0| 1 |
|1|1| 0 |
Результат операции сложения по модулю 2 будет равен 0, если сумма соответствующих битов входных данных и параметров является четной (т.е., имеет четное количество единиц), и будет равен 1 в противном случае.
Например, для двух битовых последовательностей $\boldsymbol {x} = [1, 0, 1, 1] $ и $\boldsymbol {p} = [0, 1, 0, 1] $, результат операции $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$ будет равен $ [1, 1, 1, 0] $, так как $1+0=1$, $0+1=1$, $1+0=1$, $1+1=0$.
Операция $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ позволяет изменять состояние каждого бита входных данных $\boldsymbol {x} $ на основе соответствующего бита вектора параметров $\boldsymbol {p} $. Это позволяет формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ эффективно преобразовывать информацию и выполнять определенные операции с битами входных данных для достижения нужных результатов.
Повторное применение оператора Адамара ($H^ {n} $)
Повторное применение оператора Адамара $H^ {n} $ осуществляется после выполнения операции сложения по модулю 2 $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $. После применения операции сложения по модулю 2, результат используется в качестве нового набора данных $\boldsymbol {x} $ для повторного применения оператора Адамара.
Повторное применение оператора Адамара $H^ {n} $ к системе кубитов выполняется точно так же, как и первоначальное применение. Каждый кубит в системе подвергается операции Адамара, которая приводит его в суперпозицию состояний $|0\rangle$ и $|1\rangle$.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.