Величайшие математические задачи. Иэн Стюарт

Читать онлайн.
Название Величайшие математические задачи
Автор произведения Иэн Стюарт
Жанр Математика
Серия
Издательство Математика
Год выпуска 2013
isbn 978-5-9614-3705-8



Скачать книгу

что определенные числа являются иррациональными или трансцендентными. Решена в 1934 г. Александром Гельфондом и Теодором Шнайдером.

      8. Гипотеза Римана. Доказать, что все нетривиальные нули римановой дзета-функции лежат на критической линии. См. главу 9.

      9. Законы взаимности в числовых полях. Обобщить классический закон квадратичной взаимности (о квадратах по определенному модулю) на более высокие степени. Частично решена.

      10. Условия существования решений диофантовых уравнений. Найти алгоритм, позволяющий определить, имеет ли данное полиномиальное уравнение со многими переменными решения в целых числах. Невозможность доказал Юрий Матиясевич в 1970 г.

      11. Квадратичные формы с алгебраическими числами в качестве коэффициентов. Технические вопросы решения диофантовых уравнений со многими переменными. Решена частично.

      12. Теорема Кронекера об абелевых полях. Технические вопросы обобщения теоремы Кронекера. Не доказана до сих пор.

      13. Решение уравнений седьмой степени при помощи функций специального вида. Доказать, что общее уравнение седьмой степени не может быть решено с использованием функций двух переменных. В одной из интерпретаций возможность такого решения доказали Андрей Колмогоров и Владимир Арнольд.

      14. Конечность полной системы функций. Расширить теорему Гильберта об алгебраических инвариантах на все группы преобразований. Опроверг Масаёси Нагата в 1959 г.

      15. Исчислительная геометрия Шуберта. Герман Шуберт нашел нестрогий метод подчета различных геометрических конфигураций. Задача в том, чтобы сделать этот метод строгим. Полного решения до сих пор нет.

      16. Топология кривых и поверхностей. Сколько связанных компонент может иметь алгебраическая кривая заданной степени? Сколько различных периодических циклов может иметь алгебраическое дифференциальное уравнение заданной степени? Ограниченное продвижение.

      17. Представление определенных форм в виде суммы квадратов. Если рациональная функция всегда принимает неотрицательные значения, то должна ли она обязательно выражаться в виде суммы квадратов? Решили Эмиль Артин, Д. Дюбуа и Альбрехт Пфистер. Верно для действительных чисел, неверно в некоторых других числовых системах.

      18. Заполнение пространства многогранниками. Общие вопросы о заполнении пространства конгруэнтными многогранниками. Имеет отношение к гипотезе Кеплера, ныне доказанной (см. главу 5).

      19. Аналитичность решений в вариационном исчислении. Вариационное исчисление отвечает на такие вопросы, как «найти кратчайшую кривую с заданными свойствами». Если подобная задача формулируется при помощи красивых функций, то должно ли решение тоже быть красивым? Доказали Эннио де Джорджи в 1957 г. и Джон Нэш.

      20. Граничные задачи. Разобраться в решениях дифференциальных уравнений физики в определенной области пространства, если заданы свойства решения на ограничивающей эту область поверхности. В основном решена (вклад внесли многие мате�