Название | ИИ в деле: 50 перспективных бизнес идей для современного рынка |
---|---|
Автор произведения | Виталий Александрович Гульчеев |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2023 |
isbn |
Аналитика на основе ИИ выводит общий сентимент по бренду, отдельным товарам, категориям. Можно отслеживать динамику, сравнивать с конкурентами, анализировать влияние маркетинговых кампаний. Это дает полезные данные для принятия бизнес-решений, повышения лояльности.
Шаги реализации:
Сбор и хранение отзывов клиентов в одной базе.
Внедрение системы анализа сентимента на базе NLP.
Формирование отчетности и визуализация аналитики.
Настройка автоматических оповещений о негативных отзывах.
Рекомендации: использовать решения для анализа тональности, например, MeaningCloud.
Идея 6. Автоматизация модерации контента сайта
Контент интернет-магазина создается не только компанией, но и пользователями – отзывами, вопросами, фотографиями. Чтобы избежать нежелательного контента, применяют модерацию. ИИ помогает автоматизировать этот процесс за счет компьютерного зрения и обработки естественного языка.
Система анализирует тексты, изображения, видео и выявляет потенциально опасный контент – спам, оскорбления, ненормативную лексику, фейки и т.д. Всё это отправляется на дополнительную проверку модератором. Применение ИИ для предварительной фильтрации позволяет сэкономить до 60% ручного труда модераторов.
Шаги реализации:
Разработка модератором руководства по модерации контента.
Внедрение инструментов модерации UGC на основе AI.
Автоматическая модерация с подключением человека по необходимости.
Постоянная доработка модели модерации на основе обратной связи.
Рекомендации: использовать решения для автоматизации модерации, например, Two Hat.
Идея 7. Управление ценообразованием с помощью ИИ
Установление оптимальной цены на товары – важная задача в e-commerce. ИИ-системы помогают в этом, анализируя спрос, стратегии конкурентов, сезонность, стадию жизненного цикла товара. На основе этих данных строятся модели предсказания спроса при разных ценах.
Это позволяет гибко менять цены, запускать автоматические флэш-распродажи товаров со слабым спросом, оптимально управлять скидками. Благодаря таким алгоритмам конверсия повышается на 3-5%, а выручка растёт на 7-10% за счет оптимального ценообразования.
Шаги реализации:
Сбор данных по истории цен, спросу, факторам влияния.
Построение модели предсказания спроса от цены на базе AI.
Интеграция модели с инструментами управления ценами.
Тестирование и оптимизация модели.
Рекомендации: использовать решения для автоматизации ценообразования, например, Prisync.
Идея 8. Прогнозирование оттока клиентов с помощью ИИ
Потеря