Риски цифровизации: виды, характеристика, уголовно-правовая оценка. Коллектив авторов

Читать онлайн.
Название Риски цифровизации: виды, характеристика, уголовно-правовая оценка
Автор произведения Коллектив авторов
Жанр
Серия
Издательство
Год выпуска 2022
isbn 9785392388530



Скачать книгу

в распознавании образов, моделировании, играх. Такая эффективность ранее была недостижима для систем ИИ. При этом системы, обеспечившие технологический и научный прорыв, могут самообучаться.

      Для проведения сравнительной оценки ИИ и человеческих возможностей в 1950 г. А. Тьюринг предложил то, что станет известным как «тест Тьюринга». До сих пор еще ни ода система ИИ не прошла такой тест. Согласно правилам этого теста ИИ должен обрабатывать естественный язык, уметь учиться на разговорной речи и помнить сказанное, сообщать идеи человеку и усваивать общие понятия, отображая то, что мы называем здравым смыслом. Первым таким предложенным тестом стала игра, в которой участвуют мужчина, женщина и следователь. Задача следователя (ИИ) состоит в том, чтобы определить, кто из участников мужчина, а кто женщина. Невыполнимость по настоящее время теста Тьюринга связана с простым вопросом: попадает ли, в принципе, эта способность системы казаться разумной в область вычислимых проблем? Повсеместное распространение ИИ в виде голосовых помощников, систем распознавания изображений, голоса, автоматического перевода могут создать иллюзию того, что ИИ уже скоро достигнет уровня человеческого интеллекта. Однако ИИ нуждается в огромном количестве данных, чтобы учиться, в отличие от нашего мозга, который может учиться на разовом опыте, выстраивать заключения из одного-единственного события. Для поступательного развития ИИ необходимо дальнейшее углубление знаний об основных принципах функционирования мозга и о видах биологических сокращений, посредством которых человеческий мозг выполняет задачи. Несмотря на недостижимость идеала, повсеместное распространение методологии ИИ дает ощутимую пользу для решения специальных задач.

      Технологии искусственного интеллекта. Искусственный интеллект характеризуется в первую очередь задачами, которые он предназначен решать, но некоторые технологии и методологии ассоциируются именно с технологическим решением ИИ к ним относят машинное обучение, биологическое моделирование, представление и использование знаний, дополненный интеллект, чат боты, системы управления ИИ и другие.

      Машинное обучение является обширным подразделом ИИ, изучающим методы построения алгоритмов способных обучаться. Различают два типа обучения: по прецедентам (или индуктивное обучение), которое основано на выявлении общих закономерностей по частным эмпирическим данным; дедуктивное (или машинное) обучение, предполагающее формализацию знаний экспертов и перенос этих знаний в компьютер в виде базы знаний.

      Машинное обучение находится на стыке математической статистики, методов оптимизации и классических математических дисциплин, но имеет также собственную специфику, связанную с проблемами вычислительной эффективности и переобучения. Многие методы индуктивного обучения разрабатывались как альтернатива классическим статистическим подходам. Многие методы тесно связаны с извлечением знаний и интеллектуальным анализом данных (Data Mining).

      Машинное