Название | Риски цифровизации: виды, характеристика, уголовно-правовая оценка |
---|---|
Автор произведения | Коллектив авторов |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2022 |
isbn | 9785392388530 |
Скорость обработки означает возможность системы принимать и обрабатывать данные в необходимом объеме за ограниченное время. Многие системы Big Data предназначены для сбора информации из большого количества источников в режиме реального времени и их анализа также в режиме реального времени. Пример – медицинские устройства, предназначенные для сбора данных о здоровье и мониторинга состояния пациентов. Предназначение и важность этих систем требует собирать, анализировать эти данные и затем передавать результаты медицинскому персоналу за минимальное количество времени. Необходимость реализации интернета вещей медицинского оборудования создает запрос на обеспечение высокой скорости передачи и обработки данных.
Возможность горизонтального масштабирования – это возможность увеличить производительность и емкость системы путем подключения аппаратных или программных ресурсов таким образом, чтобы они работали как единое логическое целое. Этот механизм также называется кластеризацией вычислительных систем. Если кластеру требуется больше ресурсов для повышения производительности, обеспечения более высокой доступности, администратор может масштабировать вычислительный ресурс, добавляя в кластер больше серверов и/или хранилищ данных.
Поддержка горизонтальной масштабируемости подразумевает возможность увеличивать количество и заменять узлы «на лету», не значительно прерывая функционирование системы. Например, распределенная система хранения данных Cassandra, включает сотни узлов, размещенных в различных дата-центрах. Поскольку оборудование масштабируется горизонтально, Cassandra является отказоустойчивой и не имеет одной критичной точки отказа.
Еще одно преимущество заключается в том, что теоретически производительность горизонтально масштабируемых систем не ограничена. Производительность зависит только от количества узлов, подключённых к системе. Это драматически отличает системы с горизонтальным масштабированием от многих традиционных систем обработки данных в которых при увеличении вычислительного ресурса производительность системы в целом значимо не растет. Это приводит к серьезнейшим функциональным ограничениям традиционных систем.
Таким образом, поддержка горизонтального масштабирование обеспечивает возможность роста объемов данных и их анализа, при котором результат анализа не теряет своей полезности за время расчета. Например, оценка ситуации на дороге для системы автопилотирования должна быть рассчитана за доли секунды – в противном случае, такая оценка просто не нужна.
Примером технологического решения реализации горизонтального масштабирования является Hadoop – проект фонда Apache Software Foundation. Hadoop это библиотека