Нейросети. Обработка естественного языка. Джейд Картер

Читать онлайн.
Название Нейросети. Обработка естественного языка
Автор произведения Джейд Картер
Жанр
Серия
Издательство
Год выпуска 2023
isbn



Скачать книгу

      Сверточные нейронные сети (CNN), изначально разработанные для обработки изображений, также могут быть применены к текстовым данным. Для этого текст обрабатывается как последовательность символов или слов, и каждый элемент последовательности (символ или слово) кодируется в числовой форме. Затем текст преобразуется в матрицу, где каждый столбец соответствует символу или слову, а строки – контекстным окнам (например, наборам слов или символов).

      Давайте рассмотрим этот процесс более подробно:

      Кодирование текста: Сначала текст кодируется в числовую форму. Это может быть выполнено с использованием токенизации, при которой каждому уникальному слову или символу назначается уникальное числовое значение (индекс). Эти числовые значения представляют слова или символы в числовой форме.

      Представление в виде матрицы: Кодированный текст представляется в виде матрицы, где каждый столбец соответствует слову или символу, а строки представляют контекстные окна. Это означает, что каждая строка матрицы представляет собой последовательность слов или символов из исходного текста. Размерность матрицы зависит от размера контекстного окна и размера словаря (количество уникальных слов или символов).

      Сверточные слои: Сверточные слои в CNN применяются к матрице, чтобы извлечь важные признаки из текста. Свертка происходит путем сканирования фильтров (ядер свертки) через матрицу. Эти фильтры могут выявлять различные шаблоны и особенности в тексте, такие как последовательности слов или символов. Результатом свертки является новая матрица, называемая картой признаков (feature map).

      Пулинг (Pooling): После применения сверточных слоев может выполняться операция пулинга. Пулинг используется для уменьшения размерности карты признаков, уменьшая количество параметров и улучшая обобщающую способность модели. Обычно используется операция максимального пулинга (MaxPooling), которая выделяет наибольшие значения из окна, перемещая его по карте признаков.

      Полносвязные слои: После применения сверточных и пулинговых слоев информация передается в полносвязные слои для классификации или регрессии. Полносвязные слои работают с вектором признаков, полученным из карты признаков после операции пулинга.

      Преимущество использования CNN для текстовых данных заключается в способности модели извлекать локальные и глобальные признаки из текста, что может улучшить способность модели к анализу и классификации текста. Этот метод также позволяет модели работать с последовательностями разной длины, благодаря использованию окон и пулинга.

      Следующий код решает задачу бинарной классификации текстовых отзывов на положительные и отрицательные. Каждый отзыв имеет метку 1 (положительный) или 0 (отрицательный).

      В результате выполнения этого кода:

      1. Мы создаем модель сверточной нейронной сети (CNN), которая способна анализировать тексты.

      2. Загружаем обучающие данные в виде массива текстов `texts` и их меток `labels`.

      3. Создаем токенизатор для преобразования текстов в численные последовательности и приводим тексты к числовому представлению.

      4. Выравниваем текстовые последовательности до максимальной длины `max_sequence_length`, чтобы их можно было использовать в нейронной сети.

      5. Создаем модель CNN, состоящую из слоев Embedding, Conv1D, GlobalMaxPooling1D и Dense.

      6. Компилируем модель, используя оптимизатор