Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных. Алексей Михнин

Читать онлайн.
Название Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных
Автор произведения Алексей Михнин
Жанр
Серия
Издательство
Год выпуска 2023
isbn



Скачать книгу

главным образом в деревьях решений и ансамблях деревьев, таких как случайный лес или градиентный бустинг.

      В деревьях решений прунинг может быть осуществлен путем удаления узлов или поддеревьев, которые вносят малый вклад в точность модели или создают слишком сложные структуры. Может быть применен как во время построения дерева (преждевременный прунинг), так и после его построения (отсроченный прунинг). Применение прунинга помогает снизить вероятность переобучения, улучшая обобщающую способность дерева.

      Итак, и регуляризация, и прунинг являются техниками для упрощения моделей машинного обучения и предотвращения переобучения, но они применяются к разным типам моделей и используют разные подходы.

      Интерпретируемость: Многие традиционные методы машинного обучения, такие как линейные модели или деревья решений, являются интерпретируемыми, что означает, что их результаты и принципы работы легче объяснить и понять. Нейронные сети, особенно глубокие сети, часто считаются "черными ящиками" из-за их сложной структуры и большого количества параметров, что затрудняет интерпретацию их предсказаний.

      В целом, выбор между методами машинного обучения и нейронными сетями зависит от специфики задачи, доступных данных, вычислительных ресурсов и требований к интерпретируемости модели. В некоторых случаях использование нейронных сетей может привести к значительному улучшению результатов, в то время как в других случаях традиционные методы машинного обучения могут быть более подходящими и эффективными.

      Статистический анализ данных и методы машинного обучения

      Методы машинного обучения и статистический анализ являются инструментами для изучения и анализа данных, и выбор между ними зависит от конкретной задачи, целей и доступных данных. Вот несколько примеров, когда стоит использовать машинное обучение или статистический анализ:

      Использование статистического анализа:

      Описательная статистика: Если вам нужно просто описать основные характеристики данных, такие как среднее, медиана, стандартное отклонение и т. д., статистический анализ может быть достаточным.

      Исследование взаимосвязей: Если цель состоит в изучении взаимосвязи между переменными и выявлении статистически значимых связей, такие методы, как корреляционный анализ или регрессионный анализ, могут быть подходящими.

      Тестирование гипотез: В случае, когда вам нужно проверить определенную гипотезу о данных, такую как сравнение средних значений двух групп, статистические тесты могут быть использованы для этой цели.

      Использование машинного обучения

      Прогнозирование: Если задачей является прогнозирование значений одной переменной на основе других переменных, машинное обучение может обеспечить более точные и надежные прогнозы по сравнению со статистическими методами.

      Классификация и кластеризация: Если вам нужно разделить