Нейросети. Иван Сергеевич Камаев

Читать онлайн.
Название Нейросети
Автор произведения Иван Сергеевич Камаев
Жанр
Серия
Издательство
Год выпуска 2023
isbn



Скачать книгу

задачи.

      Архитектура типичной ГНК состоит из входного слоя, одного или нескольких скрытых слоев и выходного слоя. Каждый слой состоит из набора нейронов, которые соединены с нейронами предыдущего и следующего слоев набором весов. В процессе обучения веса настраиваются таким образом, чтобы минимизировать разницу между прогнозируемым выходом сети и фактическим выходом.

      Для обучения ГНС обычно используется метод обратного распространения, который предполагает вычисление градиента функции потерь относительно весов и последующее обновление весов с помощью алгоритма оптимизации, например, стохастического градиентного спуска. Использование нескольких скрытых слоев позволяет сети обучаться все более абстрактным представлениям входных данных, что может быть полезно для таких задач, как распознавание изображений, распознавание речи и обработка естественного языка.

      Одной из основных проблем ГНС является проблема переподгонки, которая может возникнуть, когда сеть становится слишком сложной и начинает запоминать обучающие данные вместо того, чтобы изучать обобщенные модели. Для решения этой проблемы можно использовать различные методы регуляризации, такие как отсев и уменьшение веса, чтобы предотвратить переподгонку сети.

      ГНС достигли самой высокой производительности в широком спектре задач машинного обучения, таких как классификация изображений, распознавание речи и обработка естественного языка. Они также использовались для решения таких задач, как поиск лекарств и т.д.. Доступность больших наборов данных и мощных вычислительных ресурсов позволила разработать все более сложные ГНС, которые способны обучать представлениям, которые человеку трудно или невозможно определить вручную.

      Автоэнкодерные нейронные сети

      Автокодирующие нейронные сети – это тип искусственных нейронных сетей, которые используются для обучения без надзора, изучения признаков и сжатия данных. Они состоят из кодирующей сети, которая преобразует входные данные в более низкоразмерное представление, и декодирующей сети, которая преобразует низкоразмерное представление обратно в исходное входное пространство.

      Сеть кодировщика обычно состоит из нескольких слоев нейронов, которые последовательно уменьшают размерность входных данных. Это может быть достигнуто с помощью таких методов, как конволюционные слои(Конволюционные слои в нейронных сетях – это слои, которые обрабатывают данные, используя сверточные операции. Они могут автоматически извлекать признаки из изображений, звуков и других типов данных, где важна локальная структура. Конволюционные слои могут быть использованы в различных задачах, таких как классификация изображений, распознавание речи, анализ временных рядов и многое другое.

      ), слои объединения или полностью связанные слои. Выход последнего слоя кодера называется скрытым представлением или кодом, который представляет собой сжатую версию входных