Название | Нейросети. Генерация изображений |
---|---|
Автор произведения | Джейд Картер |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2023 |
isbn |
– Финальный слой генератора имеет функцию активации `tanh`, чтобы ограничить значения изображений в диапазоне [-1, 1].
4. Создание дискриминатора (`build_discriminator`):
– Дискриминатор представляет собой нейронную сеть, которая принимает изображения и классифицирует их на "реальные" (1) или "сгенерированные" (0).
– В данном примере дискриминатор также состоит из полносвязных слоев с функцией активации LeakyReLU.
– Финальный слой дискриминатора использует сигмоидную функцию активации для получения вероятности принадлежности изображения к классу "реальные".
5. Определение функций потерь и оптимизаторов:
– В данном примере используется функция потерь бинарной кросс-энтропии (`BinaryCrossentropy`).
– Оптимизаторы для генератора и дискриминатора – `Adam` с заданным коэффициентом обучения.
6. Обучение GAN (`train_gan`):
– На каждой итерации обучения:
– Генерируется случайный вектор шума из латентного пространства.
– Генератор создает синтетические изображения на основе этого шума.
– Из обучающего набора выбирается случайный батч реальных изображений.
– Собирается батч из реальных и сгенерированных изображений.
– Дискриминатор обучается на этом батче с метками "реальные" и "сгенерированные" соответственно.
– Генератор обучается на сгенерированном шуме с метками "реальные".
– Обучение происходит чередованием обучения дискриминатора и генератора, чтобы они соревновались друг с другом.
7. Обучение GAN:
– GAN собирается из генератора и дискриминатора в последовательную модель `gan`.
– Обучение GAN происходит вызовом метода `compile` с функцией потерь `binary_crossentropy` и оптимизатором `generator_optimizer`.
Обучение GAN (Generative Adversarial Network) представляет собой процесс обучения двух компонентов сети: генератора (Generator) и дискриминатора (Discriminator), взаимодействующих друг с другом в конкурентной игре.
Вначале создается последовательная модель GAN, объединяющая генератор и дискриминатор. Это делается путем последовательного объединения слоев генератора и слоев дискриминатора в единую модель. Это позволяет обращаться к генератору и дискриминатору как к единой сущности и проводить общую оптимизацию в процессе обучения.
Для обучения GAN определяется функция потерь (loss function), которая определяет, насколько хорошо работает GAN. В случае GAN, функция потерь использует обычно бинарную кросс-энтропию (binary_crossentropy), которая является распространенным выбором для бинарных классификационных задач.
Также выбирается оптимизатор (optimizer), который отвечает за обновление весов сети в процессе обучения с учетом значения функции потерь. В данном случае, указанный `generator_optimizer` используется для оптимизации параметров генератора.
Обучение GAN происходит чередованием двух основных этапов – обучение генератора и обучение дискриминатора. На каждом этапе происходит подача различных данных и обновление соответствующих параметров моделей. Главная идея заключается в том, что генератор стремится создать реалистичные данные, которые дискриминатор не сможет отличить от реальных, в то время как дискриминатор старается