Название | Что такое информация? |
---|---|
Автор произведения | Эдуард Казанцев |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2023 |
isbn |
Тем не менее, в конце XIX века определился круг интересов так называемой дискретной (конечной) математики, основные разделы которой (теория матриц, теория групп, теория множеств, математическая логика, теория вероятностей, теория алгоритмов и т. д.) разрабатывались еще в XVII–XVIII веках одновременно с элементами непрерывной математики.
Более того, элементы дискретной математики возникли в глубокой древности. Типичными для того периода были задачи, связанные со свойствами целых чисел – Диофант (3 век), и приведшие затем к созданию теории чисел – Л. Эйлер (1707–1783), К. Гаусс (1777–1855).
Позже, в основном в связи с игровыми задачами, появились элементы комбинаторного анализа и дискретной теории вероятностей – Б. Паскаль (1623–1662), П. Ферма (1601–1665). Затем возникли важнейшие понятия алгебры, такие как группа, поле, кольцо и др. – Ж. Лагранж (1763–1813), Э. Галуа (1811–1832), имевшие, по существу, дискретную природу.
В середине 19 века Л. Эйлер заложил основы теории графов, которая в дальнейшем привела к созданию эффективных методов решения транспортных задач. Тогда же появилась теория матриц – У. Гамильтон (1805–1865), А. Кэлли (1821–1895), К. Вейерштрасс (1815–1897).
Теорию множеств разработал Г. Кантор (1845–1918), которая встретила со стороны его современников резкое сопротивление, но впоследствии оказала большое влияние на развитие математики. Теория множеств является фундаментом ряда новых математических дисциплин. Постепенно теоретико-множественные методы находят все большее применение и в классических частях математики: дифференциальные уравнения, вариационное исчисление, теория вероятностей и др. Однако в вопросах обоснования математики, теория множеств сама нуждается в обосновании применяемых в ней методов рассуждения. Более того, все логические трудности, связанные с обоснованием математического учения о бесконечности, при переходе на точку зрения общей теории множеств, приобретают лишь большую остроту.
Стремление к строгости математических рассуждений привело к появлению математической логики – Дж. Буль (1815–1864), О. Морган (1806–1871), Э. Пост (1897–1954), И.И. Жегалкин (1869–1947), К. Гедель (1906–1978).
Наибольшего развития дискретная математика достигла в связи с запросами практики, приведшими к появлению новых наук: кибернетики, теории кодирования, теории алгоритмов, теории автоматов и др. – Н. Винер (1894–1964), К. Шеннон (1916–1989), А. Черч (1903–1992), А. Тьюринг (1912–1954). Наконец, появился запрос и на создание теории информации.
Само деление математики на непрерывную и дискретную достаточно условно, так как в настоящее время происходит интенсивный обмен идей и методов между ними. Правильней было бы говорить о становлении в XX веке новой современной