Нейросети практика. Джейд Картер

Читать онлайн.
Название Нейросети практика
Автор произведения Джейд Картер
Жанр
Серия
Издательство
Год выпуска 2023
isbn



Скачать книгу

следующие по времени данные – для проверки и настройки гиперпараметров, а самые новые данные – для тестирования производительности модели на новых, ранее не виденных данных.

      В каждом из этих примеров данные разделяются на обучающий, проверочный и тестовый наборы, чтобы обеспечить правильную оценку и настройку модели. При разделении данных важно сохранять баланс между классами (если речь идет о задаче классификации) и убедиться, что разделение отражает реальное распределение данных.

      6. Обработка пропущенных значений:

      Верно, обработка пропущенных значений является важным шагом в предобработке данных для нейронных сетей. Пропущенные значения могут возникать из-за различных причин, таких как ошибки в сборе данных, технические проблемы или пропуски в самом наборе данных. Вот некоторые распространенные методы обработки пропущенных значений:

      – Заполнение средним значением: В этом методе пропущенные значения заполняются средним значением по соответствующему признаку. Это подходит для числовых признаков, где среднее значение характеризует общую тенденцию данных.

      ```python

      import pandas as pd

      # Загрузка данных

      data = pd.read_csv('data.csv')

      # Заполнение пропущенных значений средним значением

      data_filled = data.fillna(data.mean())

      ```

      – Заполнение медианой: В этом методе пропущенные значения заполняются медианой по соответствующему признаку. Медиана является робастной мерой центральной тенденции, и она более устойчива к выбросам, чем среднее значение.

      ```python

      import pandas as pd

      # Загрузка данных

      data = pd.read_csv('data.csv')

      # Заполнение пропущенных значений медианой

      data_filled = data.fillna(data.median())

      ```

      – Заполнение наиболее частым значением: В этом методе пропущенные значения заполняются наиболее часто встречающимся значением по соответствующему признаку. Это подходит для категориальных признаков.

      ```python

      import pandas as pd

      # Загрузка данных

      data = pd.read_csv('data.csv')

      # Заполнение пропущенных значений наиболее частым значением

      data_filled = data.fillna(data.mode().iloc[0])

      ```

      Обработка пропущенных значений зависит от контекста данных и характера проблемы. Важно принимать во внимание тип данных, статистические свойства и особенности датасета при выборе метода заполнения пропущенных значений.

      7. Создание фичей:

      Фичи (features) – это характеристики или атрибуты, которые используются для описания данных и представления объектов или событий. В контексте глубокого обучения, фичи представляют собой входные данные, которые подаются на вход нейронной сети для обучения или прогнозирования.

      Фичи являются числовыми или категориальными переменными, которые содержат информацию о характеристиках или свойствах данных. Они могут быть извлечены из существующих данных или созданы на основе предварительной обработки данных.

      Например, в задаче классификации изображений, фичи могут представлять собой числовые значения, соответствующие интенсивности пикселей изображения, или высокоуровневые признаки, извлеченные из сверточных слоев нейронной сети.

      Фичи могут также включать категориальные переменные, такие как