Машинное обучение. Джейд Картер

Читать онлайн.
Название Машинное обучение
Автор произведения Джейд Картер
Жанр
Серия
Издательство
Год выпуска 2023
isbn



Скачать книгу

матрица представляет собой числовое представление описаний фильмов, где каждый столбец соответствует определенному термину, а каждая строка – конкретному фильму.

      5. Вычисляется матрица сходства между фильмами с использованием метода `cosine_similarity()` из модуля `sklearn.metrics.pairwise`. Косинусное сходство измеряет угол между двумя векторами и предоставляет меру их сходства. В данном случае, матрица сходства показывает степень сходства между каждой парой фильмов на основе их описаний.

      6. Определяется функция `get_recommendations()`, которая принимает название фильма, матрицу сходства и данные о фильмах. Внутри функции происходит следующее:

      – Создается объект `pd.Series` с индексами, соответствующими названиям фильмов и значениями, соответствующими их индексам в данных.

      – Получается индекс выбранного фильма.

      – Вычисляется список схожести выбранного фильма с остальными фильмами.

      – Список сортируется по убыванию схожести.

      – Выбираются топ-N фильмов на основе сходства.

      – Возвращается список рекомендуемых фильмов.

      7. Запрашивается у пользователя название фильма, для которого необходимо получить рекомендации.

      8. Вызывается функция `get_recommendations()` с передачей ей названия фильма, матрицы сходства и данных о фильмах.

      9. Выводятся на экран рекомендованные фильмы.

      Программа использует алгоритм контентной фильтрации на основе TF-IDF и косинусного сходства для рекомендации фильмов на основе их текстовых описаний. Она преобразует текстовые данные в числовые векторы с использованием TF-IDF и затем вычисляет сходство между фильмами. Рекомендуемые фильмы выбираются на основе сходства с выбранным фильмом. Это позволяет предлагать пользователю фильмы, которые имеют схожие характеристики и описания с фильмами, которые он предпочитает.

      Глава 3: Подготовка данных для машинного обучения

      Качество данных определяет качество решений. Тщательная подготовка данных – залог успешного машинного обучения и эффективного бизнеса.

      В процессе применения машинного обучения в бизнесе подготовка данных играет важную роль. Качество данных определяет эффективность моделей машинного обучения и точность результатов, которые они предоставляют. В этой главе мы рассмотрим различные аспекты и задачи, связанные с подготовкой данных, и объясним, почему они важны для бизнеса.

      Одной из причин, почему мы будем рассматривать подготовку данных, является достижение высокого качества прогнозов и решений. Чистые и точные данные являются основой для создания моделей машинного обучения, которые могут давать надежные прогнозы и принимать обоснованные решения. Подготовка данных помогает устранить шум, выбросы и другие аномалии, что повышает точность прогнозов и решений.

      Другой важной ролью подготовки данных является оптимизация бизнес-процессов. Анализ данных, включенный в процесс подготовки, позволяет лучше понять структуру и особенности данных. Это помогает оптимизировать бизнес-процессы и принимать обоснованные решения на основе данных. Например, анализ данных может выявить паттерны потребительского поведения, что позволит оптимизировать маркетинговые стратегии и улучшить взаимодействие с клиентами.

      Также подготовка данных играет роль в персонализации и улучшении опыта