Название | Искусственный интеллект. Начало новой технологической революции: вызовы и возможности |
---|---|
Автор произведения | Р. С. Маков |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2023 |
isbn |
Например, сверточные нейронные сети уже научились находить на снимках неба сверхновые, гравитационные линзы, квазары, галактики с активными ядрами. Причем алгоритмы способны обнаруживать такие объекты на самых ранних стадиях, когда человеческий глаз еще не различает ничего необычного. Это дает астрономам возможность исследовать редчайшие и быстропротекающие явления, буквально революционизируя наше понимание Вселенной.
Еще одна область, где искусственного интеллекта может совершить прорыв – это моделирование и предсказание динамики сложных астрофизических систем. Будь то эволюция галактик, процессы внутри звезд и планет, столкновения черных дыр – традиционные численные модели плохо справляются с описанием столь нелинейных и многомасштабных явлений. ИИ-алгоритмы, обученные на симуляциях и наблюдательных данных, способны строить гораздо более точные и быстрые анализы, улавливая глубинные закономерности и связи между параметрами.
Например, недавно астрофизики из Гарварда использовали генеративно-состязательные сети для моделирования слияний черных дыр. Обученная на тысячах численных симуляций, нейросеть научилась генерировать гравитационно-волновые сигналы неотличимые от "настоящих". Но если традиционный расчет одного сценария слияния занимал недели, то искусственный интеллект выдавал тысячи синтетических сигналов в секунду! В перспективе такой подход позволит радикально ускорить и удешевить астрофизические симуляции, давая ученым возможность исследовать необъятные просторы параметрического пространства.
Но, пожалуй, самый впечатляющий потенциал рассматриваемой технологии в астрономии связан с возможностью совершать неожиданные открытия, выходящие за рамки человеческих представлений. Самообучающиеся алгоритмы способны самостоятельно искать необычные паттерны в данных, не опираясь на заранее заданные шаблоны и гипотезы. Фактически это путь к "автоматизированным открытиям", когда искусственный интеллект будет не просто помощником ученого, но равноправным участником научного поиска.
Первой ласточкой такого подхода стала система SkyNet, разработанная астрономами из Австралии. Основанная на методах глубокого обучения, она самостоятельно анализирует огромные массивы данных в поисках редких и необычных астрономических объектов и явлений. В частности, SkyNet уже обнаружила несколько десятков уникальных двойных галактик и галактик с экстремальным звездообразованием,