Название | НЕэлектронные компьютеры и их создатели |
---|---|
Автор произведения | Леонид Черняк |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2023 |
isbn |
Возраст находки по последним данным оценивается в 20 000 лет, но она не самая древняя, известны более ранние подобные, кость павиана из Лебомбо в Свазиленде (ей 37 000) и ее ровесница, кость волка, найденная в Чехословакии, однако записи на них проще, только насечки без какой-либо системы.
Системы нумерации и счисления
Для начала заметим, что есть пара близких, но не тождественных понятий – «система нумерации» и «система счисления». Чаще под нумерацией понимают присвоение номеров домам, книжным томам и т.д., но есть и другое значение этого слова, так еще называют приемы записи чисел посредством тех или иных символов (специальных или букв). Система же счисления – это собственно запись чисел с использованием той или иной системы нумерации. Между ними есть очевидное различие, на которое обычно не обращают внимание, используя эти понятия как синонимы.
Способы нумерации родились из неудобства оперировать большим количеством палочек в унарной системе. Показательный пример – при ручной обработке результатов голосования 4 точки и 6 палочек ставят определенным образом так, что они образуют перекрещенный квадрат, считать десятками удобнее. Со времен Вавилона и Египта придумывали разные специальные символы, но чаще использовали буквы различных алфавитов.
Что же до систем счисления, их всего два типа – непозиционные и позиционные, в том и другом случае могут использоваться разные системы нумерации. Исторически раньше появились непозиционные или, иначе, аддитивные системы счисления, где каждому символу соответствует определенное число, общее значение записи получается путем суммирования или вычитания значений символов, оно не зависит о позиции символа в записи. Существенно позже появились позиционные или мультипликативные системы, где есть деление на разряды и есть основание – максимальное значение в разряде (2, 3, 5, 8, 10 …). Числовое значение записи равно сумме поразрядного сложения произведений основания на значение в каждом разряде. Мы говорим двоичная или десятичная система счисления, понимая позиционную систему с тем или иным основанием.
Из непозиционных до наших дней сохранилась римская десятичная система. Первые упоминания о ней относятся к середине I тысячелетия до н.э., для нумерации в ней используются буквы – I – один, V – 5 и X –10 … Она заимствована у этрусков и поначалу нумерация, использованная в ней, отличались от современной, но принцип записи сохранился. Эта система аддитивна, число получается путем суммирования с поправкой на то, что младшая цифра, стоящая справа от старшей, суммируется с ней,