Интеллектуальный анализ данных. Учебник. Вадим Николаевич Шмаль

Читать онлайн.
Название Интеллектуальный анализ данных. Учебник
Автор произведения Вадим Николаевич Шмаль
Жанр
Серия
Издательство
Год выпуска 0
isbn 9785005944801



Скачать книгу

недостаточно посмотреть на конкретный тип инструмента – нам также нужно посмотреть, какой тип инструмента будет использоваться для определенного типа процесса. Это пример того, как анализ данных не должен быть сосредоточен только на решаемой проблеме. Скорее всего, система проходит множество различных процессов, поэтому нам нужно посмотреть, как будут использоваться различные инструменты для создания взаимосвязи между двумя точками, а затем решить, какой тип данных рассматривать.

      Часто мы будем больше озабочены тем, как будет применяться метод. Например, мы можем захотеть увидеть, какой тип данных, скорее всего, будет полезен для поиска связи. Мы видим, что нет большой разницы в том, как применяется обработка естественного языка. Это означает, что, если мы хотим найти взаимосвязь, обработка естественного языка будет хорошим выбором. Однако обработка естественного языка не решает все возможные отношения. Обработка естественного языка часто полезна, когда мы хотим сделать огромное количество маленьких шагов, но обработка естественного языка ничего не делает, когда мы хотим пойти действительно глубоко. Взгляд на обработку естественного языка позволяет устанавливать связи между данными, чего нельзя сделать при использовании других методов. Это одна из причин, по которой обработка естественного языка может быть полезной, но не необходимой.

      Тем не менее, обработка естественного языка часто не находит таких сильных связей, как распознавание изображений, потому что обработка естественного языка фокусируется на более простых данных, тогда как распознавание изображений рассматривает очень сложные данные. В этом случае обработка естественного языка не очень хороша, но все же может быть полезна. Рассмотрение обработки естественного языка не всегда является лучшим способом решения проблемы. Обработка естественного языка может быть полезна, если данные простые, но иногда невозможно работать с очень сложными данными.

      Этот пример можно применить ко многим различным типам данных, но обработка естественного языка, как правило, более полезна для данных естественного языка, таких как текстовые файлы. Для более сложных данных (таких как изображения) обработки естественного языка часто бывает недостаточно. Если есть проблема с обработкой естественного языка, важно рассмотреть другие методы, такие как определение слов и определение того, какие данные на самом деле хранятся в изображении. Этот тип данных потребует другой структуры данных, чтобы найти взаимосвязь.

      С возрастающей сложностью технологий у нас часто нет времени просматривать данные, которые мы просматриваем. Даже если мы посмотрим на данные, мы можем не найти хорошего решения, потому что у нас есть большое количество вариантов, но не так много времени, чтобы рассмотреть их все. Вот почему во многих компаниях есть специалист по данным, который может принять множество различных решений, а затем решить,