Название | Скорость мысли. Грандиозное путешествие сквозь мозг за 2,1 секунды |
---|---|
Автор произведения | Марк Хамфрис |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2021 |
isbn | 978-5-6046877-3-4 |
Рисунок 2.1. Основные части нейрона. Импульсы образуются в теле нейрона и распространяются по его отростку-аксону – «кабелю», соединенному через синаптические промежутки с дендритами соседних нейронов, древообразными структурами отростков, которые принимают импульсы-сообщения от аксонов.
Процесс возникновения каналов в мембране всегда протекает одинаково, поэтому электрический импульс всегда получается одинаковой продолжительности и амплитуды. Либо импульс есть, либо его нет, никаких компромиссов.
Путь к пониманию универсальной природы нервных импульсов начался с исследований легко доступных нервных окончаний у неприхотливых лабораторных животных: седалищного нерва лягушки, глаза мечехвоста и глаза угря [19]. Импульсы, регистрировавшиеся в этих экспериментах, каждый раз оказывались одной и той же формы. Однако потребовалось более двух десятилетий кропотливой работы, чтобы, начав с анализа этих первых записей, сделанных в первой половине 1930-х годов, и ставя эксперименты на других животных, найти ответ на вопрос, почему так происходит. Кульминацией стала модель, разработанная Аланом Ллойдом Ходжкином и Эндрю Хаксли в 1952 году, в которой они собрали все доступные данные [20].
Ходжкин и Хаксли работали с гигантским аксоном кальмара (речь, конечно, об аксоне, который является гигантским у обычного кальмара, а не об аксоне гигантского кальмара, обитающего в глубинах океана, – разместить такого левиафана в обычной лаборатории было бы довольно непросто). Его огромный по клеточным меркам диаметр [21] стал настоящим подарком для ученых, которым удалось ввести электрод прямо внутрь аксона и напрямую зарегистрировать импульс, перемещающийся по нему. А еще экспериментаторы научились выдавливать из аксона цитоплазму и заменять ее на солевые растворы разного состава. Их идея заключалась в том, чтобы затем поиграть с ионами в жидкости, в которой находился нейрон, увеличивая или уменьшая концентрацию определенных типов ионов, чтобы выяснить, какие именно ионные токи участвуют в проведении нервного импульса.
Дело в том, что живые нейроны находятся в соленой среде – за пределами мембраны, в межклеточной жидкости, много ионов натрия (с положительным зарядом, +) и ионов хлора (с отрицательным зарядом, —). Однако в покое внутри нейрона, в его цитоплазме, ионов натрия и хлора мало, но много ионов калия (тоже положительно заряженных, +). Поскольку концентрации заряженных ионов – особенно калия – различаются по обе стороны мембраны, это создает на ней электрический потенциал, называемый потенциалом покоя. Изменяя концентрации ионов в жидкости, окружающей нейрон, Ходжкин и Хаксли управляли величиной этого потенциала. И, что очень важно, смогли выяснить, какие типы ионов (натрия, калия или хлора) определяют каждую фазу формирования импульса.
Мучая аксон кальмара в ванночке с соленой водой, ученые открыли процесс рождения импульса (рис. 2.2). Когда
19
[3] Интересные описания исследований нервных импульсов, от Гальвани и вплоть до работ Ходжкина и Хаксли в 1950-х годах, см. в книге
20
{1} В 1963 году они получили Нобелевскую премию в области физиологии и медицины за свою модель для описания электрических механизмов, которые обусловливают генерацию и передачу нервного сигнала. –
21
{2} Кальмары передвигаются реактивным способом, выбрасывая воду из внутренней полости. Резкое сокращение мышц позволяет им совершать «прыжки» с большой скоростью на короткие расстояния. Управление этими мышцами осуществляется как раз при помощи нейронов с гигантскими аксонами – диаметром до 1 мм (типичный диаметр аксона у млекопитающих в сотни раз меньше – около 2 мкм). Толщина гигантского аксона кальмара увеличивает скорость проведения нервного импульса: чем больше площадь поперечного сечения аксона, тем меньше его сопротивление. –