Нематематика. Для начинающих продюсеров. Олег Иванов

Читать онлайн.
Название Нематематика. Для начинающих продюсеров
Автор произведения Олег Иванов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9785005685810



Скачать книгу

то же самое множество. Если к некоторому множеству прибавить его же, то мы получим вовсе не удвоенное, а всего лишь исходное множество. С числами результаты подобных действий выглядели бы иначе.

      2.4. Нечеткие множества

      Нечеткое множество является расширением понятия множества. Если для обычного множества элементы могут принадлежать или не принадлежать ему, то для нечеткого элементы могут принадлежать ему лишь в некоторой степени, скажем на 20% или на 70% – в любой мере от 0 до 100 процентов, или от 0 до 1, кому как удобнее. Нечеткие множества Понятие нечеткого множества было введено Лотфи Заде в 1965 году в его статье «Fuzzy Sets».

      Основные понятия

      Множество – Set

      Пустое множество – Empty Set

      Алгебра множеств – Algebra of Sets

      Нечеткое множество – Fuzzy Set

      Контрольные вопросы

      1. Что называют множеством?

      2. Какие множества равны между собой?

      3. Какие существуют операции над множествами?

      4. Что такое алгебра множеств?

      Задание для выполнения

      Нечеткие множества в реальном мире. Найдите объект или явление в сфере вашей деятельности, которое можно описать при помощи понятия нечеткого множества. Нарисуйте его и расскажите что у вас получилось. Найдите два пересекающихся между собой нечетких множества. Опишите элементы, которые попадают в пересечение. Как можно оценить, насколько хорошо описывает реальную ситуацию модель нечетких множеств?

      ЧИСЛА

      Глава 3. Числа

      В этой главе обсуждаются числа и их различные виды. Некоторое внимание уделено понятиям точки и прямой, которые являются привычной геометрической интерпретацией для множества действительных чисел и часто используются для того, чтобы разобраться в самых разных ситуациях. Понятие счетности множества тесно связано с понятием мощности множества, которое применяется, чтобы сравнивать между собой различные множества, возможно даже бесконечные. Самое важное в этой главе для практических применений – это подход к измерению различных объектов и их свойств. Как будет видно, не всегда для этого нам нужны числа, иногда они могут оказаться совсем бесполезными.

      3.1. Виды чисел

      Числа представляют собой одно из основных понятий математики и используются для количественной характеристики объектов, их сравнения и нумерации. Натуральные числа появились при подсчете объектов. Целые числа возникли расширением понятия натурального числа путем добавления отрицательных чисел и нуля. Рациональные числа включают целые и дробные величины и могут быть выражены бесконечной периодической десятичной дробью. Рациональные числа являются решением каких-либо линейных уравнений. Иррациональные числа это действительные числа, которые не являются рациональными, то есть все остальные числа на числовой прямой. Иррациональные числа могут