Nanovaccinology as Targeted Therapeutics. Группа авторов

Читать онлайн.
Название Nanovaccinology as Targeted Therapeutics
Автор произведения Группа авторов
Жанр Медицина
Серия
Издательство Медицина
Год выпуска 0
isbn 9781119858027



Скачать книгу

to xylog...Figure 5.4 AFM microscope three-dimensional images: (a) PLGA (Uncoated nanoparti...Scheme 5.1 Combining mannose receptor-mediated nanovaccines and gene-regulated P...Scheme 5.2 Schematic showing BTs as nanovaccines for cancer immunotherapy. (a) T...Scheme 5.3 Schematic illustration for vaccine delivery processes after IV and SC...Figure 5.5 Schematic illustration to show the structure of (a) tumor CM@CaPyro N...Figure 5.6 Schematic of the tannic acid-formulated nanovaccine and the process o...Figure 5.7 Characterization of the conjugates. (a) Representative TEM image of a...Figure 5.8 Characterization of Gold nanoparticles (GN-particles). Transmission E...

      6 Chapter 6Figure 6.1 Advantages of nanocarriers in vaccines for cancer therapy.Figure 6.2 Pathways in cancer immunotherapy.Figure 6.3 Mechanism of action of nanovaccines.

      7 Chapter 7Figure 7.1 Molecule and ball, space filling of 2C4NA crystal [50–52].Figure 7.2 ORTEP of 2C4NA crystal [50–52].Figure 7.3 ORTEP—unit cell of 2C4NA crystal [50–52].Figure 7.4 3 × 3 × 3 Super cell lattice of 2C4NA crystal [50–52].Figure 7.5 20 nm nanotubular of 2C4NA crystal [50–52].Figure 7.6 Vanderwall’s medium of 2C4NA crystal [50–52].Figure 7.7 Miller’s indices 4 × 4 × 4 unit cell 4 × 4 × 4 of 2C4NA crystal [50–5...Figure 7.8 Miller’s indices dipeptide linked of 2C4NA crystal [50–52].Figure 7.9 Hirshfield finger printed effect of 2C4NA crystal [50–52].Figure 7.10 FL 379 nm—nanoscaled 2C4NA crystal.

      8 Chapter 8Figure 8.1 Molecular structural of 2C6NA crystals [50–52].Figure 8.2 Ball and stick of 2C6NA crystals [50–52].Figure 8.3 Space filled of 2C6NA crystals [50–52].Figure 8.4 Atibacterial activity of 2C6NA nanocrystals.Figure 8.5 HeLa cell of 26CNA of 25, 100, 400 microg/ml.

      9 Chapter 9Figure 9.1 PXRD of BGLBMH crystals.Figure 9.2 FL of nano BGLBMH crystals.Figure 9.3 Software based thermal ellipsoidal plot-promolecular generation syste...Figure 9.4 Software based thermal ellipsoidal plot-promolecular generation syste...

      10 Chapter 10Figure 10.1 Unit cell by ORTEP [50–52].Figure 10.2 4 × 4 × 4 super lattice [50–52].Figure 10.3 16 nm nano tubular effect on N2MNM4MBH [50–52].Figure 10.4 Energized titled crystal with colored effect by software [50–52].Figure 10.5 Ribbon structure of N2MNM4MBH crystals [50–52].Figure 10.6 COX structure [50–52].Figure 10.7 COX ribbon structure bonded with molecule of N2MNM4MBH crystals [50–...Figure 10.8 Cyclooxygenase with ball orientation with crystal [50–52].Figure 10.9 AA of diabetic representation of titled crystal of both scalings.

      11 Chapter 11Figure 11.1 Bio activity of ZnO NPs—E. coli.Figure 11.2 Bio activity of ZnO NPs—S. aureus.Figure 11.3 PXRD of MIZN NPs.Figure 11.4 Evolution of XRD patterns of biogenic MIZN NPs.Figure 11.5 Magnetization-field hysteresis curves of biogenic MIZN-NPs.

      12 Chapter 12Figure 12.1 2F5NA crystals—molecular model.Figure 12.2 2F5NA crystals—unit cell [50–52].Figure 12.3 2F5NA crystals—3D crystal model.Figure 12.4 2F5NA crystals—3 × 3 × 3 model [50–52].Figure 12.5 2F5NA crystals—HFA without surface effect.Figure 12.6 2F5NA crystals—HFA di effect [50–52].Figure 12.7 2F5NA crystals—HFA de effect.Figure 12.8 2F5NA crystals—HFA dnorms effect [50–52].Figure 12.9 2F5NA crystals—shape index effect.Figure 12.10 2F5NA crystals—HFA curvedness effect [50–52].Figure 12.11 2F5NA crystals—fragment patched effect.Figure 12.12 2F5NA crystals—fingerprint effect [50–52].Figure 12.13 2F5NA crystals—peptide link effect [50–52].Figure 12.14 2F5NA crystals—nanotube with acidic link effect [50–52].Figure 12.15 2F5NA crystals—weak interactions [50–52].Figure 12.16 2F5NA crystals—5 × 5 × 5 slab [50–52].Figure 12.17 (a, b) 2F5NA crystals—Ortep of crystal and unit cell frame work wit...Figure 12.18 2F5NA crystals—interactions mapping with different energies [50–52]...Figure 12.19 Void, electron, deformed densities, potential and frontier orbitals...

      13 Chapter 13Figure 13.1 Nanotubular fabricated AMPHB crystals with order in 20 nm scaling [5...Figure 13.2 Thermal ellipsoidal 50% of AMPHB crystalline molecule [50–52].Figure 13.3 Acidic frame built on crystal structure of AMPHB [50–52].Figure 13.4 Peptide bonds in the G framed network of the crystal proceed for rot...Figure 13.5 Vanderwall’s efficiency of AMPHB by software—projection, force field...Figure 13.6 AMPHB—optimized force field for the fabricated device with crystal [...Figure 13.7 Cloned effect with electron density of AMPHB by software [50–52].

      14 Chapter 14Figure 14.1 Molecule–CPDMDP—Ball and stick depiction.Figure 14.2 CPDMDP—3D effect [50–52].Figure 14.3 CPDMDP—Halosian effect.Figure 14.4 Molecule—50% Vanderwall’s plan [50–52].Figure 14.5 CPDMDP—Unit cell of 0.1Å with 1x pixel size and box bounded with 0.5...Figure 14.6 CPDMDP—Nano tubular generation built with C-H atoms of 2 × 3 order [...Figure 14.7 CPDMDP—Hirshfeld analysis with finger print effectiveness [50–52].Figure 14.8 CPDMDP—Vanderwall’s effect with coloured potential effect [50–52].Figure 14.9 CPDMDP—Super crystal lattice with 3 × 3 × 3 scheme (a) Crystalline v...Figure 14.10 CPDMDP – Crystalline voids, electron density and deformation densit...

      15 Chapter 15Figure 15.1 (a), (b) Molecular diagram and unit cell by software for 4M2NA cryst...Figure 15.2 3D-pattern for 4M2NA crystals [50–52].Figure 15.3 Solvent surface for 4M2NA crystals.Figure 15.4 Molecular potential for 4M2NA crystals [50–52].Figure 15.5 (a) Hirshfeld - dnorms for 4M2NA crystals, (b) Hirshfeld - di for 4M...Figure 15.6 (a) Hirshfeld—curvedness for 4M2NA crystals, (b) Hirshfeld—fragmente...Figure 15.7 Hirshfeld—finger print whole for internal Vs external for 4M2NA crys...Figure 15.8 Hirshfeld—crystal voids for 4M2NA crystals [50–52].Figure 15.9a Hirshfeld—electron density for 4M2NA crystals [50–52].Figure 15.9b Hirshfeld—deformation density for 4M2NA crystals [50–52].Figure 15.9c Hirshfeld—electrostatic potential for 4M2NA crystals [50–52].Figure 15.10a Super cell lattice of 4 × 4 × 4 of 3 axes for 4M2NA crystals [50–5...Figure 15.10b Acidic framework and peptide linkage for 4M2NA crystals [50–52].Figure 15.11 Optimized force field for 4M2NA crystals [50–52].

      16 Chapter 19Figure 19.1 The evolution of conventional vaccines and nanovaccines.

      Guide

      1  Cover

      2  Table of Contents

      3  Title Page

      4  Copyright

      5  Preface

      6  Begin Reading

      7  Index

      8  End User License Agreement

      Pages

      1  v

      2  ii

      3  iii

      4  iv

      5  xv

      6  xvi

      7  xvii

      8  xviii