Nanovaccinology as Targeted Therapeutics. Группа авторов

Читать онлайн.
Название Nanovaccinology as Targeted Therapeutics
Автор произведения Группа авторов
Жанр Медицина
Серия
Издательство Медицина
Год выпуска 0
isbn 9781119858027



Скачать книгу

Ulery, B.D. et al., Rational design of pathogen-mimicking amphiphilic materials as nanoadjuvants. Sci. Rep., 1, 198, 2011.

      58. Liu, Y. et al., Functional nanomaterials can optimize the efficacy of vaccines. Small (Weinheim an der Bergstrasse, Germany), 10, 4505–4520, 2014.

      59. Stone, J.W. et al., Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology, 24, 295102, 2013.

      60. Gregory, A.E., Titball, R., Williamson, D., Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol., 3, 13, 2013.

      61. Bianco, A., Kostarelos, K., Prato, M., Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 9, 674–679, 2005.

      62. Wang, T. et al., Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur. J. Pharm. Sci.: Official Journal of the European Federation for Pharmaceutical Sciences, 44, 653–659, 2011.

      63. Villa, C.H. et al., Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano, 5, 5300–5311, 2011.

      64. Parra, J., Abad-Somovilla, A., Mercader, J.V., Taton, T.A., Abad-Fuentes, A., Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J. Control. Release: Official Journal of the Controlled Release Society, 170, 242–251, 2013.

      65. Pantarotto, D. et al., Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol., 10, 961–966, 2003.

      66. Niut, Y. et al., Recent advances in the rational design of silica-based nanoparticles for gene therapy. Ther. Deliv., 3, 1217–1237, 2012.

      67. Yu, M. et al., Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale, 5, 178–183, 2013.

      68. Xia, T. et al., Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano, 3, 3273–3286, 2009.

      69. He, X.X. et al., Bioconjugated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc., 125, 7168–7169, 2003.

      70. Wang, J. et al., The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials, 35, 466–478, 2014.

      71. Al-Deen, F.M. et al., Magnetic nanovectors for the development of DNA blood-stage malaria vaccines. Nanomaterials (Basel, Switzerland), 7, 1–17, 2017.

      73. Kraft, J.C., Freeling, J.P., Wang, Z., Ho, R.J., Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci., 103, 29–52, 2014.

      74. Schwendener, R.A., Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines, 2, 159–182, 2014.

      75. Wang, N. et al., Mannose derivative and lipid a dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur. J. Pharm. Biopharm.: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 88, 194–206, 2014.

      76. Orr, M.T. et al., Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis. J. Control. Release: Official Journal of the Controlled Release Society, 172, 190–200, 2013.

      77. Felnerova, D., Viret, J.F., Glück, R., Moser, C., Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol., 15, 518–529, 2004.

      78. Monto, A.S. et al., Influenza control in the 21st century: Optimizing protection of older adults. Vaccine, 27, 5043–5053, 2009.

      79. Noad, R. and Roy, P., Virus-like particles as immunogens. Trends Microbiol., 11, 438–444, 2003.

      80. Grimm, S.K. and Ackerman, M.E., Vaccine design: Emerging concepts and renewed optimism. Curr. Opin. Biotechnol., 24, 1078–1088, 2013.

      81. Bissett, S.L. et al., Pre-clinical immunogenicity of human papillomavirus alpha-7 and alpha-9 major capsid proteins. Vaccine, 32, 6548–6555, 2014.

      82. Zhang, N., Wardwell, P.R., Bader, R.A., Polysaccharide-based micelles for drug delivery. Pharmaceutics, 5, 329–352, 2013.

      83. Torchilin, V.P., Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release: Official Journal of the Controlled Release Society, 73, 137–172, 2001.

      84. Jiménez-Sánchez, G. et al., Preparation and in vitro evaluation of imiquimod loaded polylactide-based micelles as potential vaccine adjuvants. Pharm. Res., 32, 311–320, 2015.

      85. Liu, H. et al., Structure-based programming of lymph-node targeting in molecular vaccines. Nature, 507, 519–522, 2014.

      86. Keller, S. et al., Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. J. Control. Release: Official Journal of the Controlled Release Society, 191, 24–33, 2014.

      87. Accardo, A. et al., Self-assembled or mixed peptide amphiphile micelles from Herpes simplex virus glycoproteins as potential immunomodulatory treatment. Int. J. Nanomed., 9, 2137–2148, 2014.

      88. Sanders, M.T., Brown, L.E., Deliyannis, G., Pearse, M.J., ISCOM-based vaccines: The second decade. Immunol. Cell Biol., 83, 119–128, 2005.

      90. Hägglund, S. et al., Characterization of an experimental vaccine for bovine respiratory syncytial virus. Clin. Vaccine Immunol.: CVI, 21, 997–1004, 2014.

      91. Pearse, M.J. and Drane, D., ISCOMATRIX adjuvant for antigen delivery. Adv. Drug Delivery Rev., 57, 465–474, 2005.

      92. Baz Morelli, A. et al., ISCOMATRIX: A novel adjuvant for use in prophylactic and therapeutic vaccines against infectious diseases. J. Med. Microbiol., 61, 935–943, 2012.

      93. Kanekiyo, M. et al., Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 499, 102–106, 2013.

      94. Champion, C.I. et al., A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One, 4, e5409, 2009.

      95. Kaba, S.A. et al., Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine. PLoS One, 7, e48304, 2012.

      96. Wahome, N. et al., Conformation-specific display of 4E10 and 2F5 epitopes on self-assembling protein nanoparticles as a potential HIV vaccine. Chem. Biol. Drug Des., 80, 349–357, 2012.

      97. El Bissati, K. et al., Protein nanovaccine confers robust immunity against Toxoplasma. NPJ Vaccines, 2, 24, 2017.

      98. Pimentel, T.A. et al., Peptide nanoparticles as novel immunogens: Design and analysis