Essential Concepts in MRI. Yang Xia

Читать онлайн.
Название Essential Concepts in MRI
Автор произведения Yang Xia
Жанр Медицина
Серия
Издательство Медицина
Год выпуска 0
isbn 9781119798248



Скачать книгу

matrix product Aρ, via Eq. (A2.33). Since Ix=12[0110] in the formalism of Pauli’s spin matrices (cf. Appendix A2.5), we have, from Eq. (3.12),

      StartLayout 1st Row ModifyingAbove less-than psi StartAbsoluteValue upper I Subscript x Baseline EndAbsoluteValue psi greater-than With bar equals sigma-summation Subscript psi Baseline p Subscript psi Baseline less-than psi StartAbsoluteValue upper I Subscript x Baseline EndAbsoluteValue psi greater-than 2nd Row equals upper T r left-parenthesis upper I Subscript x Baseline rho right-parenthesis 3rd Row equals one-half left-parenthesis ModifyingAbove a Subscript 1 slash 2 Baseline zero width space asterisk a Subscript negative 1 slash 2 Baseline With bar plus ModifyingAbove a Subscript 1 slash 2 Baseline a Subscript negative 1 slash 2 Baseline zero width space asterisk With bar right-parenthesis comma EndLayout (3.16)

      3.5 MACROSCOPIC MAGNETIZATION FOR SPIN 1/2

      In the current context, the observable quantity is just the (macroscopic) magnetization M, given by

      upper M equals ModifyingAbove less-than upper N gamma italic h over two pi upper I greater-than With bar (3.17a)

      or upper M equals upper N gamma italic h over two pi left-parenthesis ModifyingAbove less-than upper I Subscript x Baseline greater-than With bar i plus ModifyingAbove less-than upper I Subscript y Baseline greater-than With bar j plus ModifyingAbove less-than upper I Subscript z Baseline greater-than With bar k right-parenthesis comma (3.17b)

      where N is the number of spins, and i, j, and k are the unit vectors in the Cartesian coordinates. Equation (3.17) is important because it may be shown that any state of the density matrix (defined in Appendix A2.6) for an ensemble of non-interacting spin-1/2 particles can be described using the macroscopic magnetization defined in this manner, thus permitting a classical description of simple spin systems.

      In the absence of an external magnetic field, the ensemble average of the magnetization vector should be zero due to the random directions of the magnetic dipoles of the nuclei.

      If a sample is immersed in an external field and in thermal equilibrium, the density operator associated with this magnetization vector is given by

      rho equals StartFraction exp left-parenthesis negative script upper H slash k Subscript upper B Baseline upper T right-parenthesis Over upper T r left-bracket exp left-parenthesis script upper H slash zero width space k Subscript upper B Baseline upper T right-parenthesis right-bracket EndFraction period (3.18)

      The transverse component of M is zero due to the even distribution of the azimuthal phase angles of the precessing nuclei in the transverse plane. This corresponds to phase incoherence leading to the zero value of the off-diagonal elements of ρ,

      ModifyingAbove a Subscript 1 slash 2 Baseline zero width space asterisk a Subscript negative 1 slash 2 Baseline With bar equals ModifyingAbove a Subscript 1 slash 2 Baseline a Subscript negative 1 slash 2 Baseline zero width space asterisk With bar equals 0 period (3.19)

      The z component of the magnetization M arises from the difference in populations between the upper and lower energy states. At room temperature, the magnitude of this magnetization in the equilibrium state, M0, can be derived as

      upper M 0 equals less-than upper M Subscript z Baseline greater-than equals upper N gamma italic h over two pi less-than upper I Subscript z Baseline greater-than equals upper N gamma italic h over two pi upper T r left-parenthesis rho upper I Subscript z Baseline right-parenthesis equals StartFraction upper N left-parenthesis gamma italic h over two pi right-parenthesis squared upper B 0 Over 4 k Subscript upper B Baseline upper T EndFraction period (3.20)

      For a spin-1/2 system at room temperature, the population difference between the spin-up (m=+1/2) state and the spin-down (m=−1/2) state can be calculated from the diagonal elements of ρ, as

      3.6 RESONANT EXCITATION

      When both B0 and B1(t) are present and perpendicular to each other (B1 in the transverse plane), we can write down the Hamiltonian in the laboratory frame as

      script upper H Subscript lab Baseline equals minus italic h over two pi gamma upper B 0 upper I Subscript z Baseline minus 2 italic h over two pi gamma upper B 1 cosine left-parenthesis omega t right-parenthesis upper I Subscript x Baseline period (3.22)

      In the rotating frame, the Hamiltonian becomes

      script upper H Subscript rotating Baseline equals en-dash italic h over two pi gamma left-parenthesis upper B 0 en-dash omega slash gamma right-parenthesis upper I Subscript z Baseline en-dash italic h over two pi gamma upper B 1 upper I Subscript x Baseline period (3.23)

      At ω = ω0, we have

      script upper H Subscript rotating Baseline equals en-dash italic h over two pi gamma upper B 1 upper I Subscript x Baseline period (3.24)

      Since Ix=12(I++I−), where I+ and I- are the raising and lowering operators defined in Appendix A2.4, the time evolution of the spin system corresponds to an inter-conversion of each spin between |1/2> and |1/2> at a rate of γB1 (an oscillation).

      3.7 MECHANISMS OF SPIN RELAXATION

      Spin relaxation is truly fundamental and central to the theory of NMR and MRI; the influence of spin relaxation on both NMR and MRI measurements is wide, deep, and quite often subtle. It is therefore worth taking some time to learn to appreciate the subtleties of spin relaxation.

      A nucleus in a liquid experiences a fluctuating field, due to the magnetic moments of nuclei in other molecules as they undergo