Vibroacoustic Simulation. Alexander Peiffer

Читать онлайн.
Название Vibroacoustic Simulation
Автор произведения Alexander Peiffer
Жанр Отраслевые издания
Серия
Издательство Отраслевые издания
Год выпуска 0
isbn 9781119849865



Скачать книгу

href="#fb3_img_img_71ff5497-f0af-5691-a451-7b6bbead1f7f.png" alt="StartFraction 1 Over c 0 squared EndFraction StartFraction partial-differential squared p Over partial-differential t squared EndFraction minus nabla squared p equals 0"/> (2.27)

      Inserting the velocity v′=∇Φ derived from the potential Φ into the linear equation of motion (2.24) provides the required relation between pressure and the velocity potential

       rho 0 StartFraction partial-differential Over partial-differential t EndFraction nabla normal upper Phi plus nabla p equals nabla left-parenthesis rho 0 StartFraction partial-differential normal upper Phi Over partial-differential t EndFraction plus p right-parenthesis equals 0 (2.28)

      Thus, the relationship between pressure p and the velocity potential Φ is

      Entering this into the wave equation (2.27) and eliminating one time derivative gives:

      The definition of the velocity potential (2.25) and equation (2.29) can be applied for the derivation of a relationship between acoustic velocity and pressure:

      2.3 Solutions of the Wave Equation

      In acoustics we stay in most cases in the linear domain, so we change the notations from equations (2.20)–(2.22):

       bold v Superscript prime Baseline right-arrow bold v rho Superscript prime Baseline right-arrow rho (2.32)

      Equations (2.27) and (2.30) define the mathematical law for the propagation of waves. For the explanation of basic concepts the wave equation is used in one dimensional form.

      2.3.1 Harmonic Waves

       f left-parenthesis x right-parenthesis comma g left-parenthesis x right-parenthesis equals e Superscript j omega x slash c 0 Baseline equals e Superscript j k x Baseline with k equals StartFraction omega Over c 0 EndFraction (2.33)

      and get

Name Time Space
Symbol Unit Symbol Unit
Period T s λ=c0T m
Frequency f=1T s −1(Hz) (⋅)=1λ m −1
Angular frequency ω=2πf=2πT s −1 k=2πλ=ω/c0 m −1

      The time integration in Equation (2.31) corresponds to the factor 1/(jω) and reads in the frequency domain:

      For one-dimensional waves in the x-direction this leads to:

      Depending on the wave orientation the ratio between pressure and velocity is given by:

       bold-italic v Subscript x Baseline equals plus-or-minus StartFraction 1 Over rho 0 c 0 EndFraction bold-italic p (2.37)

      In accordance with the impedance concept from section 1.2.3 we define the ratio of complex pressure and velocity as specific acoustic impedance z

      also called acoustic impedance. For plane waves this leads to:

       z 0 equals plus-or-minus rho 0 c 0 (2.39)