Vibroacoustic Simulation. Alexander Peiffer

Читать онлайн.
Название Vibroacoustic Simulation
Автор произведения Alexander Peiffer
Жанр Отраслевые издания
Серия
Издательство Отраслевые издания
Год выпуска 0
isbn 9781119849865



Скачать книгу

alt="bold-italic upper G left-parenthesis omega right-parenthesis equals bold-italic upper H left-parenthesis omega right-parenthesis dot 1"/> (1.179)

      The inverse Fourier transform of the unit spectrum ejωt0=1 for t0=0 is the delta function δ(t) according to (1.32). In the time domain this reads as the following convolution integral

       h left-parenthesis t right-parenthesis equals integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis t minus tau right-parenthesis delta left-parenthesis tau right-parenthesis d tau (1.180)

       h left-parenthesis t right-parenthesis equals StartFraction 1 Over StartRoot 1 minus zeta squared EndRoot omega Subscript n Baseline m EndFraction e Superscript minus zeta m omega Super Subscript n Superscript t Baseline sine left-parenthesis StartRoot 1 minus zeta squared EndRoot omega Subscript n Baseline t right-parenthesis (1.181)

      This is the solution of the following equation of motion

       m ModifyingAbove u With two-dots plus c Subscript v Baseline ModifyingAbove u With dot plus k Subscript s Baseline u equals delta left-parenthesis t right-parenthesis (1.182)

      which corresponds to the solution of the homogeneous version in (1.1) for the following initial conditions

       u left-parenthesis 0 right-parenthesis equals 0 v Subscript x Baseline 0 Baseline equals ModifyingAbove u With dot left-parenthesis 0 right-parenthesis equals 1 slash m (1.183)

      Finally, with the definition of system response functions in time and frequency domain, there is a powerful description available. This will be used in Section 1.6.3 in order to describe the system response to random signals.

      1.6.3 Systems Excited by Random Signals

      We know from section 1.5.4 that the random signal cannot be Fourier transformed. As a consequence we apply the correlation methods from above to the output of a system excited by random signals. We start with the autocorrelation of the system output g from excitation by random input f

       StartLayout 1st Row 1st Column upper R Subscript g g Baseline left-parenthesis tau right-parenthesis 2nd Column equals upper E left-bracket g left-parenthesis t right-parenthesis g left-parenthesis t plus tau right-parenthesis right-bracket 2nd Row 1st Column Blank 2nd Column equals upper E left-bracket integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 1 right-parenthesis f left-parenthesis t minus tau 1 right-parenthesis d tau 1 integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 2 right-parenthesis f left-parenthesis t plus tau minus tau 2 right-parenthesis d tau 2 right-bracket EndLayout (1.184)

      The impulse response can by taken out from the expected value operation, because it does not depend on the time. Hence we get

       upper R Subscript g g Baseline left-parenthesis tau right-parenthesis equals integral Subscript negative normal infinity Superscript normal infinity Baseline integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 1 right-parenthesis h left-parenthesis tau 2 right-parenthesis upper E left-bracket f left-parenthesis t minus tau 1 right-parenthesis f left-parenthesis t plus tau minus tau 2 right-parenthesis right-bracket d tau 1 d tau 2 (1.185)

      When we assume a retarded time argument of τ′=τ+τ1−τ2 the expected value can be interpreted as the autocorrelation of f(t). With this assumption we get:

       upper R Subscript g g Baseline left-parenthesis tau right-parenthesis equals integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 1 right-parenthesis left-bracket integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 2 right-parenthesis upper R Subscript f f Baseline left-parenthesis t plus tau 1 minus tau 2 right-parenthesis d tau 2 right-bracket d tau 1 (1.186)

      The term in the rectangular brackets can be seen as the convolution with argument (τ+τ1).

       upper R Subscript g g Baseline left-parenthesis tau right-parenthesis equals integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 1 right-parenthesis left-bracket h left-parenthesis t plus tau 1 right-parenthesis asterisk upper R Subscript f f Baseline left-parenthesis t plus tau 1 right-parenthesis right-bracket d tau 1 (1.187)

      By replacing τ1 by −u this reads as

       upper R Subscript g g Baseline left-parenthesis tau right-parenthesis equals integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis negative u right-parenthesis left-bracket h left-parenthesis t minus u right-parenthesis asterisk upper R Subscript f f Baseline left-parenthesis t minus u right-parenthesis right-bracket d u equals h left-parenthesis tau right-parenthesis asterisk h left-parenthesis negative tau right-parenthesis asterisk upper R Subscript f f Baseline left-parenthesis tau right-parenthesis (1.188)

       upper S Subscript g g Baseline left-parenthesis omega right-parenthesis equals bold-italic upper H left-parenthesis omega right-parenthesis bold-italic upper H Superscript asterisk Baseline left-parenthesis omega right-parenthesis upper S Subscript f f Baseline left-parenthesis omega right-parenthesis equals StartAbsoluteValue bold-italic upper H left-parenthesis omega right-parenthesis EndAbsoluteValue squared upper S Subscript f f Baseline left-parenthesis omega right-parenthesis (1.189)

      So we know now the autospectrum of the system excited by random response. Next we investigate the cross correlation between input and output.

       StartLayout 1st Row upper R Subscript f g Baseline equals upper E left-bracket f left-parenthesis t right-parenthesis g left-parenthesis t plus tau right-parenthesis right-bracket equals upper E left-bracket f left-parenthesis t right-parenthesis integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 1 right-parenthesis f left-parenthesis t plus tau minus tau 1 right-parenthesis d tau 1 right-bracket EndLayout (1.190)

       StartLayout 1st Row equals integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 1 right-parenthesis upper E left-bracket f left-parenthesis t right-parenthesis f left-parenthesis t plus tau minus tau 1 right-parenthesis right-bracket d tau 1 EndLayout (1.191)

      This expression can be simplified by assuming the expected value to be the auto-convolution with argument τ−τ1 to: