Thermografie. Eric Rahne

Читать онлайн.
Название Thermografie
Автор произведения Eric Rahne
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9783527820733



Скачать книгу

      Gl. 32image

      Gl. 33image

       Legende:

I ... Strahlstärke (= raumwinkelbezogene Strahlungsleistung) [W/sr]
L ... Strahldichte [W/m2 sr]
A ... effektive Abstrahlungsfläche in Richtung des Raumwinkels [m2]

      Von diesen Definitionen und Abhängigkeiten ausgehend, kann die Eingangs erwähnte Frage, wie viel Strahlung einer mit Strahldichte L strahlenden Fläche dAs aus geometrischer Sicht eine Empfängerfläche dAE erreicht. Die zu betrachtende Anordnung nimmt hierbei folgende Form an:

image

      Vom Lambertschen Strahler ausgehend, kann der Strahlstrom Φ wie folgt bestimmt werden:

      Gl. 34image

      Der Empfänger befindet sich - vom Strahler aus betrachtet - in folgendem Raumwinkel:

      Gl. 35image

      Gl. 36image

      Wegen der Symmetrie der Gleichung könnten Sender und Empfänger auch vertauscht werden. Die auf eine Flächeneinheit des Empfängers einfallende, von einer Flächeneinheit des Senders ausgehende Strahlungsenergie nimmt zwar mit dem Quadrat der Entfernung r ab, jedoch wächst auf Grund des unveränderlichen „Sichtwinkels” des Empfängers die durch jede der Flächeneinheiten desselben empfangene Senderfläche (die Anzahl der „betrachteten” Senderflächeneinheiten) dagegen mit dem Quadrat der Entfernung.

      Dank dieses Zusammenhanges gleicht sich also die quadratische Abnahme der auf eine Empfängerflächeneinheit wirkende Strahlungsintensität genau durch die gleichzeitige quadratische Zunahme der betrachteten Empfängerfläche aus. Umgedreht gilt auch, dass zwar die von einem Strahler auf eine Flächeneinheit des Empfängers ausgesandte Strahlung in ihrer Intensität quadratisch mit dem Abstand abnimmt, sich aber die Größe der bestrahlten Fläche in gleichem Maße erhöht.

      Damit kann auch ausgesagt werden, dass im Falle eines endlos großen Strahlers und ebenfalls unendlich großen Senders die Summe der übertragenen Strahlung unabhängig vom Abstand zwischen Sender und Empfänger ist. (Wieder unter der Voraussetzung der verlustfreien Übertragung über ein ideales Fenster zwischen Sender und Empfänger.) Aus dem Sichtwinkel des Energieerhaltungsgesetzes ist das natürlich auch so zu erwarten gewesen.

       Hinweis: Insofern Sender und / oder Empfänger nur endliche Abmessungen besitzen, dann gilt der oben genannte Zusammenhang nur bis zu einer bestimmten maximalen Entfernung zwischen Sender und Empfänger. Nämlich bis zu der Entfernung, bei der sich die gesamte Strahlung des Senders noch vollständig auf der Fläche des Empfängers abbildet, bzw. keine andere Strahlung (außer der des betrachteten Senders) auf die Empfängerfläche trifft. Überschreitet die räumliche Ausbreitung der Abstrahlung des Senders die Empfängerfläche (d.h. die Abbildungsfläche der Senderstrahlung auf der Empfängerfläche) oder überschreitet die räumliche Abmessung des Empfängersichtfeldes die Senderfläche (d.h. die Abbildung des Sichtfeldes des Empfängers auf der Senderfläche), dann gilt die obige Gesetzmäßigkeit natürlich nicht mehr. (Grund dafür ist die nicht erfasste oder aus einer anderen Quelle stammende - mit erfasste - Strahlung. Je nachdem, ob die Sender- oder die Empfängerfläche überschritten wurde.)

      Wegen der Wichtigkeit dieses Themas und dessen Auswirkungen aus Sicht der Optik, wird das photometrische Gesetz im Kapitel 2.1.4. „Fotometrisches Grundgesetz bei Messsystemen mit Sammellinsen” speziell für die messtechnischen Lösungen der berührungslosen Temperaturmessung weiter behandelt.

       Erklärendes Praxisbeispiel

      Viele - die theoretischen Grundlagen nicht kennende - Thermografieanwender würden ohne viel Nachdenken die am Anfang des Kapitels gestellte Frage nach der Änderung des zu erwartenden Messwertes in Abhängigkeit vom Messabstand in völliger Allgemeingültigkeit mit „ja” beantworten. Auch unter den Voraussetzungen der Einhaltung der geometrischen Auflösung und der verlustfreien Übertragung. Andere würden wahrscheinlich den vermuteten Zusammenhang mit der abstandsabhängigen Beleuchtung eines Objektes durch eine Taschenlampe erklären. Mit Sicherheit wird aber wird fast niemand standfest aussagen, dass der Abstand unter Einhaltung der geometrischen Auflösung und bei verlustfreier Übertragung keinen Einfluss auf das Messergebnis hat.

      Um den Zusammenhang leichter verständlich zu machen, folgt hier also ein Beispiel, welches sich gerade (mit Absicht!) auf die soeben erwähnte Beleuchtung eines Objektes durch eine Taschenlampe stützt. Für unsere Beispielbetrachtung wird allerdings die Taschenlampe auf ein Fernrohr montiert, so dass der Lichtkegel der Taschenlampe und der Beobachtungsraumwinkel (ebenfalls ein Kegel) des Fernrohres in exakt die gleiche Richtung ausgerichtet sind. (Hierbei wird jetzt geflissentlich vernachlässigt, das die optischen Achsen beider Geräte natürlich nicht aufeinander, sondern mit einem gegebenen Abstand parallel zueinander liegen.)

      Mit der Taschenlampe wird nun eine Reflexionsleinwand (Projektionsleinwand) beleuchtet, deren Reflexionseigenschaft für dieses Beispiel mit 100% angenommen wird. Es entsteht (bei rechtwinkliger Anordnung) auf der Leinwand eine kreisrunde beleuchtete Fläche. Diese wird mittels des Fernrohres betrachtet, wobei das Fernrohr so eingestellt wird, dass exakt die durch die Taschenlampe beleuchtete Fläche erfasst wird (nicht mehr, aber auch nicht weniger). Viele Erklärungen sind hier sicher nicht notwendig, um klarzustellen: die Lichtstärke im Fernrohr entspricht genau der Gesamtstrahlungsleistung der Taschenlampe.

      Abb. 28 und 29: Betrachtung einer durch Taschenlampe beleuchteten Kreisfläche mittels eines Fernrohres (die rechte Abbildung stellt die Situation bei verdoppeltem Abstand zur Leinwand dar)

      Bei der Verdopplung des Abstandes zwischen Leinwand und Taschenlampe (und damit auch zwischen Leinwand und Fernrohr) vergrößert sich natürlich der Radius der beleuchteten Fläche auf der Leinwand auf das Doppelte. Dies entspricht einer Vervierfachung der Fläche, genau der quadratischen Regel des photometrischen Gesetzes entsprechend. Da sich die auf die Leinwand projizierte Gesamtstrahlungsleistung hierbei natürlich nicht geändert hat, verringert sich die auf eine Flächeneinheit entfallende Strahlungsleistung - und damit die flächenspezifische Bestrahlung - auf ein Viertel, verglichen mit dem Wert der vorherige (kürzeren) Entfernung. Aber auch die Beobachtungsfläche des Fernrohres wächst durch die Verdopplung der Entfernung an, und zwar auf den doppelten Radius. Damit wird wiederum genau die durch die Taschenlampe beobachtete Fläche betrachtet und weiterhin genau die Gesamt - strahlungsleistung der Taschenlampe erfasst. Damit ändert sich also die im Fernrohr zu beobachtende Lichtstärke nicht - welche damit also unabhängig vom Abstand Taschenlampe/Fernrohr und Leinwand ist!

      Mit anderen Worten: mit der Verdoppelung des Abstandes zwischen Taschenlampe/Fernrohr und Leinwand verringert sich zwar die Lichtintensität auf ein Viertel bei einer gleichzeitigen Vervierfachung der beleuchteten Fläche, zur selben Zeit wird aber auch eine vierfache Fläche