DNA Origami. Группа авторов

Читать онлайн.
Название DNA Origami
Автор произведения Группа авторов
Жанр Отраслевые издания
Серия
Издательство Отраслевые издания
Год выпуска 0
isbn 9781119682585



Скачать книгу

Gerling, T. and Dietz, H. (2019). Reversible covalent stabilization of stacking contacts in DNA assemblies. Angewandte Chemie International Edition 58 (9): 2680–2684.

      25 25 Fuller, R.B. (1982). Synergetics: Explorations in the Geometry of Thinking. Macmillan Pub Co 916.

      26 26 Eyckmans, J., Boudou, T., Yu, X., and Chen, C.S. (2011). A hitchhiker’s guide to mechanobiology. Dev Cell 21 (1): 35–47.

      27 27 Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EHJ, Koenderink GH (2015). A guide to mechanobiology: where biology and physics meet. Biochimica et Biophysica Acta (BBA) ‐ Molecular Cell Research. 1853(11, Part B):3043–3052.

      28 28 Ariga, K., Minami, K., Ebara, M., and Nakanishi, J. (2016). What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand‐operating nanotechnology and mechanobiology. Polymer Journal 48 (4): 371–389.

      29 29 Wang, J.H.‐C. and Thampatty, B.P. (2006). An introductory review of cell mechanobiology. Biomechanics and Modeling in Mechanobiology 5 (1): 1–16.

      30 30 Plotnikov, S.V., Pasapera, A.M., Sabass, B., and Waterman, C.M. (2012). Force fluctuations within focal adhesions mediate ECM‐rigidity sensing to guide directed cell migration. Cell 151 (7): 1513–1527.

      31 31 Elosegui‐Artola, A., Bazellières, E., Allen, M.D. et al. (2014). Rigidity sensing and adaptation through regulation of integrin types. Nature Materials 13 (6): 631–637.

      32 32 Lewis AH, Grandl J (2015). Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. eLife. 4:e12088.

      33 33 Dupont, S., Morsut, L., Aragona, M. et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474 (7350): 179–183.

      34 34 Funke JJ, Ketterer P, Lieleg C, Schunter S, Korber P, Dietz H (2016). Uncovering the forces between nucleosomes using DNA origami. Science Advances 2(11):e1600974.

      35 35 Kilchherr, F., Wachauf, C., Pelz, B. et al. (2016). Single‐molecule dissection of stacking forces in DNA. Science 353 (6304).

      36 36 Nickels, P.C., Wünsch, B., Holzmeister, P. et al. (2016). Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp. Science 354 (6310): 305–307.

      37 37 Kramm, K., Schröder, T., Gouge, J. et al. (2020). DNA origami‐based single‐molecule force spectroscopy elucidates RNA Polymerase III pre‐initiation complex stability. Nature Communications 11 (1): 2828.

      38 38 Mishra, S., Feng, Y., Endo, M., and Sugiyama, H. (2020). Advances in DNA origami–cell interfaces. ChemBioChem 21 (1–2): 33–44.

      39 39 Chen, J. and Seeman, N.C. (1991). Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350 (6319): 631–633.

      40 40 Shih, W.M., Quispe, J.D., and Joyce, G.F. (2004). A 1.7‐kilobase single‐stranded DNA that folds into a nanoscale octahedron. Nature 427 (6975): 618–621.

      41 41 Han, D., Qi, X., Myhrvold, C. et al. (2017). Single‐stranded DNA and RNA origami. Science 358 (6369): eaao2648.

      42 42 Geary, C., Rothemund, P.W.K., and Andersen, E.S. (2014). A single‐stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345 (6198): 799–804.

      43 43 He, Y., Ye, T., Su, M. et al. (2008). Hierarchical self‐assembly of DNA into symmetric supramolecular polyhedra. Nature 452 (7184): 198–201.

      44 44 He, Y., Chen, Y., Liu, H. et al. (2005). Self‐assembly of hexagonal DNA two‐dimensional (2D) arrays. Journal of the American Chemical Society 127 (35): 12202–12203.

      45 45 Rothemund PWK. Scaffolded DNA (2006) origami: from generalized multicrossovers to polygonal networks. In: Chen J, Jonoska N, Rozenberg G, editors. Nanotechnology: Science and Computation. Berlin, Heidelberg: Springer; p. 3–21. (Natural Computing Series).

      46 46 Yan, H., Park, S.H., Finkelstein, G. et al. (2003). DNA‐templated self‐assembly of protein arrays and highly conductive nanowires. Science 301 (5641): 1882–1884.

      47 47 Veneziano, R., Ratanalert, S., Zhang, K. et al. (2016). Designer nanoscale DNA assemblies programmed from the top down. Science 352 (6293): 1534–1534.

      48 48 Wang, W., Chen, S., An, B. et al. (2019). Complex wireframe DNA nanostructures from simple building blocks. Nature Communications 10 (1): 1–8.

      49 49 Iinuma, R., Ke, Y., Jungmann, R. et al. (2014). Polyhedra self‐assembled from DNA tripods and characterized with 3D DNA‐PAINT. Science 344 (6179): 65–69.

      50 50 Gerling, T., Wagenbauer, K.F., Neuner, A.M., and Dietz, H. (2015). Dynamic DNA devices and assemblies formed by shape‐complementary, non–base pairing 3D components. Science 347 (6229): 1446–1452.

      51 51 Smith, D.M., Schüller, V., Forthmann, C. et al. (2011). A structurally variable hinged tetrahedron framework from DNA origami. Journal of Nucleic Acids 2011: e360954.

      52 52 Han, D., Pal, S., Yang, Y. et al. (2013). DNA gridiron nanostructures based on four‐arm junctions. Science 339 (6126): 1412–1415.

      53 53 Zhang, F., Jiang, S., Wu, S. et al. (2015). Complex wireframe DNA origami nanostructures with multi‐arm junction vertices. Nature Nanotechnology 10 (9): 779–784.

      54 54 Hong, F., Jiang, S., Wang, T. et al. (2016). 3D framework DNA origami with layered crossovers. Angewandte Chemie International Edition 55 (41): 12832–12835.

      55 55 Benson, E., Mohammed, A., Gardell, J. et al. (2015). DNA rendering of polyhedral meshes at the nanoscale. Nature 523 (7561): 441–444.

      56 56 Benson, E., Mohammed, A., Bosco, A. et al. (2016). Computer‐aided production of scaffolded DNA nanostructures from flat sheet meshes. Angewandte Chemie International Edition 55 (31): 8869–8872.

      57 57 Benson, E., Mohammed, A., Rayneau‐Kirkhope, D. et al. (2018). Effects of design choices on the stiffness of wireframe DNA origami structures. ACS Nano 12 (9): 9291–9299.

      58 58 Benson, E., Lolaico, M., Tarasov, Y. et al. (2019). Evolutionary refinement of DNA nanostructures using coarse‐grained molecular dynamics simulations. ACS Nano 13 (11): 12591–12598.

      59 59 Jun H, Zhang F, Shepherd T, Ratanalert S, Qi X, Yan H, et al. (2019) Autonomously designed free‐form 2D DNA origami. Science Advances 5(1):eaav0655.

      60 60 Jun, H., Shepherd, T.R., Zhang, K. et al. (2019). Automated sequence design of 3D polyhedral wireframe DNA origami with honeycomb edges. ACS Nano 13 (2): 2083–2093.

      61 61 Jun, H., Wang, X., Bricker, W.P., and Bathe, M. (2019). Automated sequence design of 2D wireframe DNA origami with honeycomb edges. Nature Communications 10 (1): 1–9.

      62 62 Jun H, Wang X, Bricker WP, Jackson S, Bathe M (2020). Rapid prototyping of wireframe scaffolded DNA origami using ATHENA. bioRxiv doi: https://doi.org/https://doi.org/10.1101/2020.02.09.940320.

      63 63 Vogel, V. and Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology 7 (4): 265–275.

      64 64 Iskratsch, T., Wolfenson, H., and Sheetz, M.P. (2014). Appreciating force and shape — the rise of mechanotransduction in cell biology. Nature Reviews Molecular Cell Biology 15 (12): 825–833.

      65 65 Gordon, W.R., Zimmerman, B., He, L. et al. (2015). Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Developmental Cell 33 (6): 729–736.

      66 66 Luca, V.C., Kim, B.C., Ge, C. et al. (2017). Notch‐Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355 (6331): 1320–1324.

      67 67 Simmel, S.S., Nickels, P.C., and Liedl, T. (2014). Wireframe and tensegrity DNA nanostructures. Accounts of Chemical Research 47 (6): 1691–1699.

      68 68 Liedl, T., Högberg, B., Tytell, J. et al. (2010). Self‐assembly of three‐dimensional prestressed tensegrity structures from DNA. Nature Nanotechnology 5 (7): 520–524.

      69 69 DeLuca, M., Shi, Z., Castro, C.E., and Arya, G. (2020).