DNA Origami. Группа авторов

Читать онлайн.
Название DNA Origami
Автор произведения Группа авторов
Жанр Отраслевые издания
Серия
Издательство Отраслевые издания
Год выпуска 0
isbn 9781119682585



Скачать книгу

(2011). Nanomechanical DNA origami 'single‐molecule beacons' directly imaged by atomic force microscopy. Nature Communications 2: 449.

      51 51 Koirala, D., Shrestha, P., Emura, T. et al. (2014). Single‐molecule mechanochemical sensing using DNA origami nanostructures. Angewandte Chemie International Edition 53: 8137–8141.

      52 52 Endo, M., Yang, Y., and Sugiyama, H. (2013). DNA origami technology for biomaterials applications. Biomaterials Science 1: 347–360.

      53 53 Ando, T., Kodera, N., Takai, E. et al. (2001). A high‐speed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America 98: 12468–12472.

      54 54 Ando, T. and Kodera, N. (2012). Visualization of mobility by atomic force microscopy. Methods in Molecular Biology 896: 57–69.

      55 55 Uchihashi, T., Kodera, N., and Ando, T. (2012). Guide to video recording of structure dynamics and dynamic processes of proteins by high‐speed atomic force microscopy. Nature Protocols 7: 1193–1206.

      56 56 Rajendran, A., Endo, M., and Sugiyama, H. (2014). State‐of‐the‐art high‐speed atomic force microscopy for investigation of single‐molecular dynamics of proteins. Chemical Reviews 114: 1493–1520.

      57 57 Walters, D.A., Cleveland, J.P., Thomson, N.H. et al. (1996). Short cantilevers for atomic force microscopy. Review of Scientific Instruments 67: 3583–3590.

      58 58 Schitter, G., Astrom, K.J., DeMartini, B.E. et al. (2007). Design and modeling of a high‐speed AFM‐scanner. IEEE Transactions of Control Systems Technology 15: 906–915.

      59 59 Sannohe, Y., Endo, M., Katsuda, Y. et al. (2010). Visualization of dynamic conformational switching of the G‐quadruplex in a DNA nanostructure. Journal of the American Chemical Society 132: 16311–16313.

      60 60 Rajendran, A., Endo, M., Hidaka, K., and Sugiyama, H. (2013). Direct and real‐time observation of rotary movement of a DNA nanomechanical device. Journal of American Chemical Society 135: 1117–1123.

      61 61 Suzuki, Y., Endo, M., Katsuda, Y. et al. (2014a). DNA origami based visualization system for studying site‐specific recombination events. Journal of American Chemical Society 136: 211–218.

      62 62 Endo, M., Katsuda, Y., Hidaka, K., and Sugiyama, H. (2010). Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. Journal of American Chemical Society 132: 1592–1597.

      63 63 Xu, Y., Sato, H., Sannohe, Y. et al. (2008). Stable lariat formation based on a G‐quadruplex scaffold. Journal of American Chemical Society 130: 16470–16471.

      64 64 Youngblood, B. and Reich, N.O. (2006). Conformational transitions as determinants of specificity for the DNA methyltransferase EcoRI. The Journal of Biological Chemistry 281: 26821–26831.

      65 65 Bruner, S.D., Norman, D.P., and Verdine, G.L. (2000). Structural basis for recognition and repair of the endogenous mutagen 8‐oxoguanine in DNA. Nature 403: 859–866.

      66 66 Morikawa, K., Matsumoto, O., Tsujimoto, M. et al. (1992). X‐ray structure of T4 endonuclease V: an excision repair enzyme specific for a pyrimidine dimer. Science 256: 523–526.

      67 67 Guo, F., Gopaul, D.N., and Van Duyne, G.D. (1997). Structure of Cre recombinase complexed with DNA in a site‐specific recombination synapse. Nature 389: 40–46.

      68 68 Van Duyne, G.D. (2001). A structural view of cre‐loxp site‐specific recombination. Annual Review of Biophysics and Biomolecular Structure 30: 87–104.

      69 69 Suzuki, Y., Endo, M., Canas, C. et al. (2014b). Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure. Nucleic Acids Research 42: 7421–7428.

      70 70 Kobayashi, Y., Misumi, O., Odahara, M. et al. (2017). Holliday junction resolvases mediate chloroplast nucleoid segregation. Science 356: 631–634.

      71 71 Rajendran, A., Endo, M., Hidaka, K., and Sugiyama, H. (2014). Direct and single‐molecule visualization of the solution‐state structures of G‐hairpin and G‐triplex intermediates. Angewandte Chemie International Edition 53: 4107–4112.

      72 72 Endo, M., Yang, Y., Suzuki, Y. et al. (2012). Single‐molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure. Angewandte Chemie International Edition 51: 10518–10522.

      73 73 Yamagata, Y., Emura, T., Hidaka, K. et al. (2016). Triple helix formation in a topologically controlled DNA nanosystem. Chemistry 22: 5494–5498.

      74 74 Endo, M., Xing, X., Zhou, X. et al. (2015). Single‐molecule manipulation of the duplex formation and dissociation at the G‐quadruplex/i‐Motif site in the DNA nanostructure. ACS Nano 9: 9922–9929.

      75 75 Endo, M., Katsuda, Y., Hidaka, K., and Sugiyama, H. (2010). A versatile DNA nanochip for direct analysis of DNA base‐excision repair. Angewandte Chemie International Edition 49: 9412–9416.

      76 76 Lee, A.J., Endo, M., Hobbs, J.K., and Walti, C. (2018). Direct single‐molecule observation of mode and geometry of RecA‐mediated homology search. ACS Nano 12: 272–278.

      77 77 Raz, M.H., Hidaka, K., Sturla, S.J. et al. (2016). Torsional constraints of DNA substrates impact Cas9 cleavage. Journal of American Chemical Society 138: 13842–13845.

      78 78 Xing, X., Sato, S., Wong, N.K. et al. (2020). Direct observation and analysis of TET‐mediated oxidation processes in a DNA origami nanochip. Nucleic Acids Research 48: 4041–4051.

      79 79 Yamamoto, S., De, D., Hidaka, K. et al. (2014). Single molecule visualization and characterization of Sox2‐Pax6 complex formation on a regulatory DNA element using a DNA origami frame. Nano Letters 14: 2286–2292.

      80 80 Raghavan, G., Hidaka, K., Sugiyama, H., and Endo, M. (2019). Direct observation and analysis of the dynamics of the photoresponsive transcription factor GAL4. Angewandte Chemie International Edition 58: 7626–7630.

      81 81 Mino, T., Iwai, N., Endo, M. et al. (2019). Translation‐dependent unwinding of stem‐loops by UPF1 licenses Regnase‐1 to degrade inflammatory mRNAs. Nucleic Acids Research 47: 8838–8859.

      82 82 Steinhauer, C., Jungmann, R., Sobey, T.L. et al. (2009). DNA origami as a nanoscopic ruler for super‐resolution microscopy. Angewandte Chemie International Edition 48: 8870–8873.

      83 83 Jungmann, R., Steinhauer, C., Scheible, M. et al. (2010). Single‐molecule kinetics and super‐resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Letters 10: 4756–4761.

      84 84 Lin, C., Jungmann, R., Leifer, A.M. et al. (2012). Submicrometre geometrically encoded fluorescent barcodes self‐assembled from DNA. Nature Chemistry 4: 832–839.

      85 85 Gu, H., Chao, J., Xiao, S.J., and Seeman, N.C. (2009). Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nature Nanotechnology 4: 245–248.

      86 86 Gu, H.Z., Chao, J., Xiao, S.J., and Seeman, N.C. (2010). A proximity‐based programmable DNA nanoscale assembly line. Nature 465: 202–205.

      87 87 Lund, K., Manzo, A.J., Dabby, N. et al. (2010). Molecular robots guided by prescriptive landscapes. Nature 465: 206–210.

      88 88 Wickham, S.F.J., Endo, M., Katsuda, Y. et al. (2011). Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotechnology 6: 166–169.

      89 89 Bath, J., Green, S.J., and Turberfield, A.J. (2005). A free‐running DNA motor powered by a nicking enzyme. Angewandte Chemie International Edition 44: 4358–4361.

      90 90 Wickham, S.F., Bath, J., Katsuda, Y. et al. (2012). A DNA‐based molecular motor that can navigate a network of tracks. Nature Nanotechnology 7: 169–173.

      91 91 Kuzuya, A., Koshi, N., Kimura, M. et al. (2010). Programmed nanopatterning of organic/inorganic nanoparticles using nanometer‐scale wells embedded in a DNA origami scaffold. Small 6: 2664–2667.

      92 92 Endo, M., Yang, Y., Emura, T. et al. (2011). Programmed placement of gold nanoparticles onto