Rank-Based Methods for Shrinkage and Selection. A. K. Md. Ehsanes Saleh

Читать онлайн.
Название Rank-Based Methods for Shrinkage and Selection
Автор произведения A. K. Md. Ehsanes Saleh
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119625421



Скачать книгу

      431  400

      432  401

      433  402

      434  403

      435  404

      436  405

      437  406

      438  407

      439  408

      440  409

      441  410

      442  411

      443  412

      444  413

      445  414

      446  415

      447  416

      448  417

      449  418

      450  419

      451  420

      452  421

      453 422

      454 423

      455 424

      456 425

      457 426

      458 427

      459 428

      460 429

      461 430

      462 431

      463 432

      464  433

      465 434

      466 435

      467 436

      468 437

      469 438

      470 439

      471 440

      472 441

      473 442

      474  443

      475 444

      476  445

      477 446

      478 447

      479 448

      1.1 Four plots using different versions of the telephone data set with fitted lines.

      1.2 Histograms and ordered residual plots of LS and Theil estimators.

      1.3 Effect of a single outlier on LS and rank estimators.

      1.4 Gradients of absolute value (Bn′(θ)) and dispersion (Dn′(θ)) functions.

      1.5 Scoring functions ϕ(u)=12(u−0.5) and ϕ+(u)=3u.

      1.6 Dispersion functions and derivative plots for 1.1(d).

      1.7 Key shrinkage characteristics of LASSO and ridge.

      1.8 Geometric interpretation of ridge.

      1.9 Geometric interpretation of LASSO.

      2.1 The first-order nature of shrinkage due to ridge.

      2.2 Two outliers found in the Q–Q plot for the Swiss data set.

      2.3 Sampling distributions of rank estimates.

      2.4 Shrinkage of β5 due to increase in ridge tuning parameter, λ2.

      2.5 Ridge traces for orthonormal, diagonal, LS, and rank estimators (m = 40).

      2.6 MSE Derivative plot to find optimal λ2 for the diagonal case.

      2.7 Bias, variance and MSE for the Swiss data set (optimal λ2 = 70.8).

      2.8 MSE for training, CV and test sets, and coefficients from the ridge trace.

      2.9 The first-order nature of shrinkage due to LASSO.

      2.10 Diamond-warping effect of weights in the aLASSO estimator for p = 2.

      2.11 Comparison of LASSO and aLASSO traces for the Swiss data set.

      2.12 Variable ordering from R-LASSO and R-aLASSO traces for the Swiss data set.

      2.14 Rank-aLASSO trace of the diabetes data set showing variable importance.

      2.15 Diabetes data set showing variable ordering and adjusted R2 plot.

      2.16 Rank-aLASSO cleaning followed by rank-ridge estimation.

      2.17 R-ridge traces and CV scheme with optimal λ2.

      2.18 MSE and MAE plots for five-fold CV scheme producing similar optimal λ2.

      2.19 LS-Enet traces for α = 0.0, 0.2, 0.4, 0.8, 1.0.

      2.20 LS-Enet traces and five-fold CV results for α = 0.6 from glmnet().

      3.1 Key shrinkage R-estimators to be considered.

      3.2 The ADRE of the shrinkage R-estimator using the optimal c and URE.

      3.3 The ADRE of the preliminary test (or hard threshold) R-estimator for different Δ2 based on λ*=2ln(2).

      3.4 The ADRE of nEnet R-estimators.

      3.5 Figure of the ADRE of all R-estimators for different Δ2.

      4.1 Boxplot and Q–Q plot using ANOVA table data.

      4.2 LS-ridge and ridge R traces for fertilizer problem from ANOVA table data.

      4.3 LS-LASSO and LASSOR traces for the fertilizer problem from the ANOVA table data.

      4.4 Effect of variance on shrinkage using ridge and LASSO traces.

      4.5 Hard threshold and positive-rule Stein–Saleh traces for ANOVA table data.

      8.1 Left: the qq-plot for the diabates data sets; Right: the distribution of the residuals.

      11.1 Sigmoid function.

      11.2 Outlier in the context of logistic regression.

      11.3 LLR vs. RLR with one outlier.

      11.4 LLR vs. RLR with no outliers.

      11.5 LLR vs. RLR with two outliers.

      11.6 Binary classification – nonlinear decision boundary.

      11.7 Binary classification comparison – nonlinear boundary.

      11.8 Ridge comparison of number of correct solutions with n = 337.

      11.9 LLR-ridge regularization showing the shrinking decision boundary.

      11.10 LLR, RLR and SVM on the circular data set with mixed outliers.

      11.11 Histogram of passengers: (a) age and (b) fare.

      11.13 RLR-ridge trace for Titanic data set.

      11.14 RLR-LASSO trace for the Titanic data set.

      11.15 RLR-aLASSO trace for the Titanic data set.

      12.1