Название | Muography |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119723066 |
25 Oláh, L. & Tanaka, H. K. M. (2021). Muography of magma intrusion beneath the active craters of Sakurajima volcano. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
26 Parasnis, D. S. (1997). Principles of Applied Geophysics, 5th edition. Springer Netherlands, 456 pp.
27 Plouff, D. (1976). Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics, 41(4), 727–741. https://doi.org/10.1190/1.1440645
28 Portal, A., Gailler, L.‐S., Labazuy, P., & Lénat, J.‐F. (2016). Geophysical imaging of the inner structure of a lava dome and its environment through gravimetry and magnetism. Journal of Volcanology and Geothermal Research, 320, 88–99. https://doi.org/10.1016/j.jvolgeores.2016.04.012
29 Rosas‐Carbajal, M., Jourde, K., Marteau, J., Deroussi, S., Komorowski, J.‐C., & Gibert, D. (2017). Three‐dimensional density structure of La Soufrière de Guadeloupe lava dome from simultaneous muon radiographies and gravity data. Geophysical Research Letters, 44, 6743–6751. https://doi.org/10.1002/2017GL074285
30 Roy, M., Lewis, M., Johnson, A., George, N., Rowe, C., & Guardincerri, E. (2018). Inferring shallow subsurface density structure from surface and underground gravity measurements: Calibrating models for relatively undeformed volcanic strata at the Jemez Volcanic Field, New Mexico, USA. Pure Applied Geophysics 175, 1003–1018. https://doi.org/10.1007/s00024‐017‐1742‐4
31 Saracino, G., Ambrosino, F., Bonechi, L., Bross, A., Cimmino, L., Ciaranfi, R., D’Alessandro, R. (2017). The MURAVES muon telescope: technology and expected performances. Annals of Geophysics, 60, 1, S0103. https://doi.org/10.4401/ag‐7378
32 Scampoli, P., Nishiyama, R., Ariga, A., Ariga, T., Ereditato, A., Lechmann, A., Mair, D., Pistillo, C., Schlunegger, F. & Vladymyrov, M. (2021). Exploration of Hidden Topography Beneath Alpine Glaciers with Muography. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth’s Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
33 Scandone, R. (1990). Chaotic collapse of calderas. Journal of Volcanology and Geothermal Research, 42, 285–302. https://doi.org/10.1016/0377‐0273(90)90005‐Z
34 Schouten, D., Furseth, D. & van Nieuwkoop, J. (2021). Muon tomography for underground resources. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
35 Seigel, H. O., Brcic, I. & Mistry, P. (1993). A Guide to High Precision Land Gravimeter Surveys, in Scintrex Ltd., Concord, Ont., Canada.
36 Si, H. (2015). TetGen, a delaunay‐based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software, 41(2), https://doi.org/10.1145/2629697
37 Tanaka, H. K. M. (2021). Principles of muography and pioneering works. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
38 Tanaka, H. K. M., Nakano, T., Takahashi, S., Yoshida, J., Ohshima, H., Maekawa, T., et al. (2007). Imaging the conduit size of the dome with cosmic‐ray muons: The structure beneath Showa‐Shinzan Lava Dome, Japan. Geophysical Research Letters, 34, L22311. https://doi.org/10.1029/2007GL031389
39 Tanaka, H. K. M., Taira, H., Uchida, T., Tanaka, M., Takeo, M., Ohminato, T., et al. (2010). Three‐dimensional computational axial tomography scan of a volcano with cosmic ray muon radiography. Journal of Geophysical Research, 115, B12332. https://doi.org/10.1029/2010JB007677
40 Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898717921
41 Thompson, L. F., Gluyas, J. G., Klinger, J., Kudryavtsev, V. A., Lincoln, D. L., Woodward, D., et al. (2021). Muography, a key technology for monitoring carbon geostorage. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
42 Tioukov, V., Giudicepietro, F., Macedonio, G., Calvari, S., Di Traglia, F., Fornaciai, A., et al. (2021). Structure of the shallow supply system at Stromboli Volcano through integration of muography, digital elevation models, seismicity, and ground deformation data. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
43 Torge, W., & Müller, J. (2012). Geodesy 4th Edition. Berlin: De Gruyter. https://doi.org/10.1515/9783110250008
44 Van Camp, M., de Viron, O., Watlet, A., Meurers, B., Francis, O. & Caudron, C. (2017). Geophysics from terrestrial time‐variable gravity measurements. Reviews of Geophysics, 55, 938–992. https://doi.org/10.1002/2017RG000566
45 Yokoyama, I. & Ohkawa, S. (1986). The subsurface structure of the AIRA caldera and its vicinity in southern Kyushu, Japan. Journal of Volcanology and Geothermal Research, 30, 253–282. https://doi.org/10.1016/0377‐0273(86)90057‐0
SUPPLEMENTAL INFORMATION
S3.1. ANALYTICAL FORMULA FOR THE GRAVITATIONAL EFFECT
In the supplemental information, the analytical formula for the gravitational attraction of a rectangular prism is presented. They are necessary to calculate the gravity parts of the design matrix (equation 3.7) and the gravitational attraction by the topography (Δg terrain in equation 3.5).
The analytical integration of equation 3.7 is complicated. The problem is rather simplified by assuming that the observer is located at the origin of the Cartesian coordinate system (Figure S3.1). Equation 3.7 then is reduced to the form
(S3.1)
The analytical solution is provided by many authors (e.g., Nagy, 1966; Plouff, 1977). Especially among them, Plouff’s solution is rather simple:
(S3.2)