Название | Drug Transporters |
---|---|
Автор произведения | Группа авторов |
Жанр | Медицина |
Серия | |
Издательство | Медицина |
Год выпуска | 0 |
isbn | 9781119739876 |
43 [43] Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, Sugiyama Y, Kanai Y, Endou H. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem 2000; 275 (6):4507–4512.
44 [44] Youngblood GL, Sweet DH. Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Physiol Renal Physiol 2004; 287 (2):F236–F244.
45 [45] Monte JC, Nagle MA, Eraly SA, Nigam SK. Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem Biophys Res Commun 2004; 323 (2):429–436.
46 [46] Wang L, Sweet DH. Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease. AAPS J 2013; 15 (1):53–69.
47 [47] Jacobsson JA, Haitina T, Lindblom J, Fredriksson R. Identification of six putative human transporters with structural similarity to the drug transporter SLC22 family. Genomics 2007; 90 (5):595–609.
48 [48] Ahn SY, Nigam SK. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol Pharmacol 2009; 76 (3):481–490.
49 [49] Eraly SA, Bush KT, Sampogna RV, Bhatnagar V, Nigam SK. The molecular pharmacology of organic anion transporters: from DNA to FDA? Mol Pharmacol 2004; 65 (3):479–487.
50 [50] Eraly SA, Hamilton BA, Nigam SK. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem Biophys Res Commun 2003; 300 (2):333–342.
51 [51] Wu W, Dnyanmote AV, Nigam SK. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol Pharmacol 2011; 79 (5):795–805.
52 [52] Burckhardt G. Drug transport by organic anion transporters (OATs). Pharmacol Ther 2012; 136 (1):106–130.
53 [53] Mundhey DA, Sapkal NP, Daud AS. Simultaneous quantification of buprenorphine HCl and naloxone HCl by vierordt's method. Int J Pharm Pharm Sci 2016; 8 (1):101–107.
54 [54] Dantzler WH, Wright SH. The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules. Biochim Biophys Acta 2003; 1618 (2):185–193.
55 [55] Pritchard JB, Miller DS. Renal secretion of organic anions and cations. Kidney Int 1996; 49 (6):1649–1654.
56 [56] Vriend J, Hoogstraten CA, Venrooij KR, van den Berge BT, Govers LP, van Rooij A, Huigen MC, Schirris TJ, Russel FG, Masereeuw R. Organic anion transporters 1 and 3 influence cellular energy metabolism in renal proximal tubule cells. Biol Chem 2019; 400 (10):1347–1358.
57 [57] Zhou F, You G. Molecular insights into the structure‐function relationship of organic anion transporters OATs. Pharm Res 2007; 24 (1):28–36.
58 [58] Feng B, Dresser MJ, Shu Y, Johns SJ, Giacomini KM. Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. Biochemistry 2001; 40 (18):5511–5520.
59 [59] Astorga B, Wunz TM, Morales M, Wright SH, Pelis RM. Differences in the substrate binding regions of renal organic anion transporters 1 (OAT1) and 3 (OAT3). Am J Physiol Renal Physiol 2011; 301 (2):F378–F386.
60 [60] Perry JL, Dembla‐Rajpal N, Hall LA, Pritchard JB. A three‐dimensional model of human organic anion transporter 1: aromatic amino acids required for substrate transport. J Biol Chem 2006; 281 (49):38071–38079.
61 [61] Tsigelny IF, Kovalskyy D, Kouznetsova VL, Balinskyi O, Sharikov Y, Bhatnagar V, Nigam SK. Conformational changes of the multispecific transporter organic anion transporter 1 (OAT1/SLC22A6) suggests a molecular mechanism for initial stages of drug and metabolite transport. Cell Biochem Biophys 2011; 61 (2):251–259.
62 [62] Kaler G, Truong DM, Sweeney DE, Logan DW, Nagle M, Wu W, Eraly SA, Nigam SK. Olfactory mucosa‐expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem Biophys Res Commun 2006; 351 (4):872–876.
63 [63] Nigam SK, Bhatnagar V. How much do we know about drug handling by SLC and ABC drug transporters in children? Clin Pharmacol Ther 2013; 94 (1):27–29.
64 [64] Sweet DH, Eraly SA, Vaughn DA, Bush KT, Nigam SK. Organic anion and cation transporter expression and function during embryonic kidney development and in organ culture models. Kidney Int 2006; 69 (5):837–845.
65 [65] Sweeney DE, Vallon V, Rieg T, Wu W, Gallegos TF, Nigam SK. Functional maturation of drug transporters in the developing, neonatal, and postnatal kidney. Mol Pharmacol 2011; 80 (1):147–154.
66 [66] Momper JD, Yang J, Gockenbach M, Vaida F, Nigam SK. Dynamics of organic anion transporter‐mediated tubular secretion during postnatal human kidney development and maturation. Clin J Am Soc Nephrol 2019; 14 (4):540–548.
67 [67] Momper JD, Nigam SK. Developmental regulation of kidney and liver solute carrier and ATP‐binding cassette drug transporters and drug metabolizing enzymes: the role of remote organ communication. Expert Opin Drug Metab Toxicol 2018; 14 (6):561–570.
68 [68] Yacovino LL, Aleksunes LM. Renal efflux transporter expression in pregnant mice with Type I diabetes. Toxicol Lett 2012; 211 (3):304–311.
69 [69] Wegner W, Burckhardt BC, Burckhardt G, Henjakovic M. Male‐dominant activation of rat renal organic anion transporter 1 (Oat1) and 3 (Oat3) expression by transcription factor BCL6. PLoS One 2012; 7 (4):e35556.
70 [70] Eder K, Ringseis R. The role of peroxisome proliferator‐activated receptor alpha in transcriptional regulation of novel organic cation transporters. Eur J Pharmacol 2010; 628 (1–3):1–5.
71 [71] Gallegos TF, Martovetsky G, Kouznetsova V, Bush KT, Nigam SK. Organic anion and cation SLC22 “drug” transporter (Oat1, Oat3, and Oct1) regulation during development and maturation of the kidney proximal tubule. PLoS One 2012; 7 (7):e40796.
72 [72] Martovetsky G, Bush KT, Nigam SK. Kidney versus liver specification of SLC and ABC drug transporters, tight junction molecules, and biomarkers. Drug Metab Dispos 2016; 44 (7):1050–1060.
73 [73] Martovetsky G, Tee JB, Nigam SK. Hepatocyte nuclear factors 4α and 1α regulate kidney developmental expression of drug‐metabolizing enzymes and drug transporters. Mol Pharmacol 2013; 84 (6):808–823.
74 [74] Marable SS, Chung E, Park J‐S. Hnf4a is required for the development of Cdh6‐expressing progenitors into proximal tubules in the mouse kidney. J Am Soc Nephrol 2020; 31 (11):2543–2558.
75 [75] Naud J, Michaud J, Beauchemin S, Hebert MJ, Roger M, Lefrancois S, Leblond FA, Pichette V. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab Dispos 2011; 39 (8):1363–1369.
76 [76] Torres AM, Dnyanmote AV, Granados JC, Nigam SK. Renal and non‐renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin Drug Metab Toxicol 2021; 17 (5):515–542.
77 [77] Di Giusto G, Anzai N, Ruiz ML, Endou H, Torres AM. Expression and function of Oat1 and Oat3 in rat kidney exposed to mercuric chloride. Arch Toxicol 2009; 83 (10):887–897.
78 [78] Saito H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: pharmacological and toxicological implications. Pharmacol Ther 2010; 125 (1):79–91.
79 [79] Lin CC, Fan HY, Kuo CW, Pao LH. Evaluation of chinese‐herbal‐medicine‐induced herb‐drug interactions: focusing on organic anion transporter 1. Evid Based Complement Alternat Med 2012; 2012:967182.
80 [80] Zhang Q, Suh W, Pan Z, You G. Short‐term and long‐term effects of protein kinase C on the trafficking and stability of human organic anion transporter 3. Int J Biochem Mol Biol 2012; 3 (2):242–249.
81 [81] Li S, Zhang Q, You G. Three ubiquitination sites of organic anion transporter‐1