Smart Grids and Micro-Grids. Umashankar Subramaniam

Читать онлайн.
Название Smart Grids and Micro-Grids
Автор произведения Umashankar Subramaniam
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119760603



Скачать книгу

G (W/m2) Vmpp(V) Impp(A) Vmpp(V) Impp(A) Vmpp(V) Impp(A) Vmpp(V) Impp(A) Vmpp(V) Impp(A) 1000 16.5 4.24 16.37 4.25 16.29 4.27 16.51 4.25 16.4975 4.2498 800 16.56 3.42 16.43 3.39 16.38 3.41 16.59 3.41 16.5814 3.4061 600 16.55 2.57 16.41 2.53 16.39 2.54 16.49 2.55 16.4755 2.5542 400 16.35 1.72 16.24 1.66 16.26 1.67 16.12 1.7 16.0935 1.6979 200 15.87 0.87 15.66 0.79 15.73 0.81 15.18 0.84 15.1603 0.8415
G(W/m2) Sandia model [22] Based on actual equivalent parameters [18] ANFIS [18] GS [15] NR
1000 69.96 69.5725 69.5583 70.16 70.1122
800 56.6352 55.6977 55.8558 56.52 56.4832
600 42.5335 41.5173 41.6306 42.11 42.0926
400 28.122 26.9584 27.1542 27.35 27.3231
200 13.8069 12.3714 12.7413 12.77 12.7591

      In this chapter, the GS and NR methods were used to estimate the five unknown parameters of SDM of PV panel such as KD245GX, U5-80 and Shell SP70 under STCs. The results have shown better performance for the NR technique compared to GS method. Further, both the approaches were used to deduce the parameters of KD245GX and Shell SP70 PV panel under dynamic environmental conditions of varying irradiance and temperature. The unknown parameters like A, Rse, Rsh, Isat, and ILG are estimated for wide range of operating conditions and the result shows better convergence for both the techniques. However, the MPP obtained from NR technique is found to be more than the GS method under varying irradiance and temperature condition. In order to validate the feasibility of presented NR approach a HST60FXXXP, 250 W panel was experimentally tested under dynamic environmental conditions. The results of I-V and P-V characteristics obtained using estimated parameters from NR technique through simulation has good agreement with the experimental result. Thus, the results have shown that the maximum power output from the panel decreases as the solar irradiance decreases due to increase in shunt resistance of the panel.

      1. Vinayagam, A., Aziz, A., Balasubramaniyam, P. M., Chandran, J., Veerasamy, V., & Gargoom, A. (2019). “Harmonics assessment and mitigation in a photovoltaic integrated network”. Sustainable Energy, Grids and Networks, 20, 100264.

      3. Biswas, P. P., Suganthan, P. N., Wu, G., & Amaratunga, G. A. (2019). “Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm”. Renewable Energy, 132, 425-438.

      4. Ishaque, K., & Salam, Z. (2011). “An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE)”. Solar energy, 85(9), 2349-2359.

      5. Sahu, H. S., & Nayak, S. K. (2016). “Numerical approach to estimate the maximum power point of a photovoltaic array”. IET Generation, Transmission & Distribution, 10(11), 2670-2680.

      6. Ishaque, K., Salam, Z., Amjad, M., & Mekhilef, S. (2012). “An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation”. IEEE transactions on Power Electronics, 27(8), 3627-3638.

      7. Kumar, C., Raj, T. D., Premkumar, M., & Raj, T. D. (2020). “A new stochastic slime mould optimization