Название | φ – Число Бога. Золотое сечение – формула мироздания |
---|---|
Автор произведения | Марио Ливио |
Жанр | Математика |
Серия | Золотой фонд науки |
Издательство | Математика |
Год выпуска | 2002 |
isbn | 978-5-17-094497-2 |
Рис. 14
Второе обстоятельство, которое часто не принимают во внимание излишне рьяные любители золотого сечения, состоит в том, что я измерял все эти длины с некоторой погрешностью. Важно понимать, что любая неточность в измерении длин приводит к еще большей неточности в вычислении их отношения. Представьте себе, например, что вы измерили две длины по 10 дюймов с погрешностью в 1 %. Это значит, что результат измерения каждой длины может попасть в промежуток от 9,9 до 10,1 дюймов. Отношение этих длин может получиться даже 9,9/10,1 = 0,98, то есть погрешность окажется уже в 2 %, вдвое больше, чем при измерении каждой длины по отдельности! Таким образом, излишне страстные почитатели золотого сечения вполне могут изменить два параметра на 1 % – а это повлияет на итоговое отношение уже на 2 %.
Теперь снова рассмотрим рис. 13 с учетом этих предостережений – и окажется, в частности, что длинный вертикальный сегмент был выбран так, что в него входит и база барельефа, а не только клинописный текст. Подобным же образом и точка, до которой измеряется длинный горизонтальный сегмент, выбрана произвольно и расположена правее, а не левее края барельефа.
Пересмотрев с этой точки зрения все существующие материалы, я был вынужден сделать заключение, что открытие вавилонянами золотого сечения крайне маловероятно.
По всей египетской земле[4]
Что же касается древних египтян, тут ситуация несколько сложнее и требует основательного детективного расследования. Здесь мы сталкиваемся с огромным количеством текстов, где утверждается, что число φ встречается, например, в пропорциях великих пирамид и других древнеегипетских монументов; казалось бы, возразить против таких доказательств нечего.
Однако позвольте начать с двух самых простых случаев – Осириона и гробницы Петосириса. Осирион – это храм, который считают кенотафом
4
В оригинале названием этого раздела служит фраза «