Название | Renewable Energy for Sustainable Growth Assessment |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119785446 |
43. I. Pancha, K. Chokshi, R. Maurya, S. Bhattacharya, P. Bachani, and S. Mishra, “Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production,” Bioresour. Technol., 2015.
44. R. L. Costa, T. V. Oliveira, J. D. S. Ferreira, V. L. Cardoso, F. Regina, and X. Batista, “Bioresource Technology Prospective technology on bioethanol production from photofermentation,” Bioresour. Technol., vol. 181, pp. 330–337, 2015.
45. S. Ho, S. Huang, C. Chen, T. Hasunuma, and A. Kondo, “Biore source Technology Bioethanol production using carbohydrate-rich microalgae biomass as feedstock,” Bioresour. Technol., vol. 135, pp. 191–198, 2013.
46. A. Qarri and A. Israel, “Seasonal biomass production , fermentable sacchari fi cation and potential ethanol yields in the marine macroalga Ulva sp . (Chlorophyta),” Renew. Energy, vol. 145, pp. 2101–2107, 2020.
47. V. Kumar, M. Nanda, H. C. Joshi, A. Singh, and S. Sharma, “Production of biodiesel and bioethanolusingalgal biomass harvested from fresh water river,” Renew. Energy, vol. 116, pp. 606–612, 2017.
48. L. F. Huang, Y. K. Liu, S. C. Su, C. C. Lai, C. R. Wu, T. J. Chao, and Y. H. Yang, “Genetic engineering of transitory starch accumulation by knockdown of OsSEX4 in rice plants for enhanced bioethanol production,” Biotechnology and Bioengineering, vol. 117, no. 4, pp. 933-944, 2020.
49. G. D’Auria, “Microalgal Biomass Recycling: From Filter to Feed,” in Reference Module in Food Science, Elsevier, 2019.
50. R. Das, S. Das, and C. Bhattacharjee, “CO2 Sequestration Using Algal Biomass and its Application as Bio Energy,” in Encyclopedia of Renewable and Sustainable Materials, Elsevier, pp. 372–384, 2020.
51. J. Moncada, J. A. Tamayo, and C. A. Cardona, “Integrating first, second, and third generation biorefineries : Incorporating microalgae into the sugarcane biorefinery,” Chem. Eng. Sci., vol. 118, pp. 126–140, 2014.
52. Y. K. Liu, C. A. Yang, W. C. Chen, and Y. H. Wei, “Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy,” J. Biosci. Bioeng., vol. 114, no. 2, pp. 198–203, 2012.
53. C. Liu and S. Wu, “From biomass waste to biofuels and biomaterial building blocks,” Renew. Energy, pp. 1–7, 2015.
54. M. A. Day, U. Türker, and A. O. Avc, “Assessment of the energy potential of agricultural biomass residues in Turkey,” Renew. Energy, vol. 138, pp. 610–619, 2019.
55. M. Ochnio and D. Karda, “Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets,” vol. 149, pp. 1246–1253, 2019.
56. E. Freitas, D. Medeiros, S. Afonso, M. Silveira, M. Aur, and R. Andreazza, “Physicochemical characterization of oil extraction from fi shing waste for biofuel production,” vol. 143, pp. 471–477, 2019.
57. R. I. Egorov, A. S. Zaitsev, H. Li, X. Gao, and P. A. Strizhak, “Intensity dependent features of the light-induced gasi fi cation of the waste-derived coal-water compositions,” Renew. Energy, vol. 146, pp. 1667–1675, 2020.
58. S. G. Sahu, “Biomass-Coal Cocombustion,” in Encyclopedia of Sustainable Technologies, Elsevier, pp. 441–446, 2017.
59. M. Mohammadi, I. Harjunkoski, S. Mikkola, and S. L. Jämsä-Jounela, “Optimal planning of a waste management supply chain,” in Computer Aided Chemical Engineering, vol. 44, Elsevier B.V., pp. 1609–1614, 2018.
60. M. Albanna, “Anaerobic digestion of the organic fraction of municipal solid waste,” in Management of Microbial Resources in the Environment, vol. 9789400759312, Springer Netherlands, pp. 313–340, 2013.
61. F. Ebrahimian, K. Karimi, and R. Kumar, “Sustainable biofuels and bioplastic production from the organic fraction of municipal solid waste,” Waste Manag., vol. 116, pp. 40–48, 2020.
62. M. Logan and C. Visvanathan, “Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects,” Waste Manag. Res., vol. 37, no. 1_suppl, pp. 27–39, 2019.
63. L. Lijó, S. González-garcía, J. Bacenetti, and M. T. Moreira, “The environmental effect of substituting energy crops for food waste as feedstock for biogas production Lucía,” Energy, vol. 137, pp.1130-1143, 2017.
64. R. Feiz, M. Johansson, E. Lindkvist, and J. Moestedt, “Key performance indicators for biogas production d methodological insights on the life-cycle analysis of biogas production from source- separated food waste,” Energy, vol. 200, pp. 117-462, 2020.
65. Y. Long, H. Wang, X. Yu, D. Shen, J. Yin, and T. Chen, “Effect of activated persulfate on gas production from food waste anaerobic digestion,” Energy, vol. 165, pp. 343-348, 2018.
66. H. Guven, M. Evren, R. Kaan, H. Ozgun, and I. Isik, “Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal waste water and food waste,” Energy, vol. 172, pp.1027-1036, 2019.
67. N. Vats, A. A. Khan, and K. Ahmad, “Observation of biogas production by sugarcane bagasse and food waste in different composition combinations,” Energy, vol. 185, pp. 1100–1105, 2019.
68. J. Zhang, W. Li, J. Lee, K. Loh, Y. Dai, and Y. W. Tong, “Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment,” Energy, vol. 137, pp. 479-486, 2017.
69. I. S. Zarkadas, A. S. So, E. A. Voudrias, and G. A. Pilidis, “Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters : Focussing on mixing ratios,” Renewable Energy, vol. 80, pp. 432–440, 2015.
70. A. Demirbas, G. Edris, and W. M. Alalayah, “Environmental Effects Sludge production from municipal wastewater treatment in sewage treatment plant,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 39, no. 10, pp. 999–1006, 2017.
71. A. Gil, J. A. Siles, A. F. Chica, J. A. Siles, and A. F. Chica, “Effect of microwave pretreatment on semi-continuous anaerobic digestion of sewage sludge,” Renewable Energy, vol. 115, pp. 917– 925, 2017.
72. M. Burducea A. Lobiuc, M. Asandulesa, M.F. Zaltariov, I. Burducea, S.M. Popescu, and V.D. Zheljazkov, “Effects of Sewage Sludge Amendments on the Growth and Physiology of Sweet Basil,” Agronomy, vol. 9, p. 548, 2019.
73. D. Kwak, “Cause of scum formation on the water surface of flocculation basin in water treatment plant,” Desaliation and Water Treatment, vol. 53, no. 8, pp. 2092-2099, 2015.
74. Y. Wang, W. Yi, F. Sha, B. Xiaojuan, Z. Jingchan, and X. Siqing, “Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plants,” Waste Manag., vol. 47, no. May 2018, pp. 91–97, 2015.
75. J. A. Villamil, A. F. Mohedano, J. S. Martín, J. J. Rodriguez, and M. A. De Rubia, “Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge . A new approach for sewage sludge management,” Renew. Energy, vol. 146, pp. 435–443, 2020.
76. S. R. Naqvi, R. Tariq, Z. Hameed, I. Ali, M. Naqvi, W.H. Chen, and M. Shahbaz “Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method,” Renew. Energy, vol. 131, pp. 854-860, 2018.
77. M. A. De Rubia, J. A. Villamil, J. J. Rodriguez, and A. F. Mohedano, “Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge,” Renew. Energy, vol. 127, pp. 697-704, 2018.
78. A. Fabregat, C. Bengoa, M. P. Caporgno, R. Trobajo,