ДАР. Детективное агентство «Розыск». Книга вторая. Дело о похищенной принцессе. Елена Гурьянова

Читать онлайн.



Скачать книгу

Если у него в руках будет принцесса Синегорья… да что там говорить! Мы тогда не просто не рискнем вступиться за другие страны, мы свою страну не сможем защитить! Введет к нам войска – и…

      – Заложница! – ахнул Илар – Черный дракон взял ее как заложницу!

      – А если она еще будет и беременна от него…

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wgARCAhhBdwDASIAAhEBAxEB/8QAHgAAAQMFAQEAAAAAAAAAAAAAAAECAwQFBgcICQr/xAAdAQEAAgMBAQEBAAAAAAAAAAAAAQIDBAUGBwgJ/9oADAMBAAIQAxAAAAHxJu9kv2eXObJKMkal6EiGPZKs1461I5Wpa6vR0ARJh7mOgrXE2cjFiXIyVd6hls6NXVugLJAWbte1yGua60KxSlkVFnI5Ecqwe3Fd6K7JDUkIs1RMdle1YsiOFFfBJizva12SzXsfRHKxoPa/BdFGRL5oyLPjVJlsjSMjZUStkY5KQ5GoqiPWJiVEyCVpWorFiZBkmPK1RlrVDFdNnOjL1HIUvINGQGKokrEXfG9kVcgqXNEmFcjgBLWEQrCorpqkcjVnMciRB9sTEcuOIpUbar4nJECokwqoTZUe0Vg6KA10xEr2QERZxuYpEoqCjUezJVUFx2WMfeqA3NR8T1xQySF+cNcKogqWqrZhB6Ia1xNWKNtQQSKK0WLNFMlGyxtiqNVtokjfHFFaLWyNlYx4xkFgv06ioj5lwwJFjkAVJlz2Pua8EijktVUUV7HVs5BMl2vY6cxLHIhEcIcrVrYcJajVc2MiorR6rHku8jdisx6umGPYs1VHFcjXKRkUEZEeEFcyRLWyNx2V8MlZI3ohrgw3VULmOH4ZBHVyDkKSgIlyAtIwSMgSNm7GvbELGr6zG1VtijdIjKEbq3EnbFiOQrLnRy5KsUWsjlEgq5LDHMg6SOSktZJFKaN4iNytiVYrkqkkMVBRKorbQ16OsHsIqIqxLGvSaCK2KuVhYI5smyNcogwmJWtIqox8karkIjo1VRzkRIqzRqhBY1cojXtkOY7JWNyJFUkY+StVc0RNckQ2Rsl6wq2S0NHNrKNkJqxjmxhRolrOY9amNc21FaOmrWPFoRxbANG1rjt7sl/jXa5SZUa9I5qJexzrQrlSao4ReQQmFVCIR6qytBLXeqOtiRJCmdUkbfIjmrbENc4Y5CuQAiVapkxiomO70CboqpWZUWOuSRqosqOKkEdjs8Y7JlRr21oj0fBFRMVmPSbBmYyoji7Ve2pr0JgRWRdw2Rdg983a57qZYGzMrZWARLJHONkj2LMe1URyLFgmZ0MlpHsktnjlRYhzVWCubJEKjm3uRk2OIx6XkQdjIjkuiJFWaOWIjej4Rg6aujckoyQtVrJY5SMcliKEwwcyaoPahHCIRwlaNVHzDBWsY5rrBikwKixWMlYiNz2qoittCjmxVGvbkqgJJVRaGOHZcbVEymuauMrFLQ1UJoo0tVoq2hgJjox7XRkhc5ZhjXNvjRJG2xMVWxVqywJHRzVti1/x7ILaI1zplHxPmqiuQihMvVj1WqOtKqpGUBby9oRkVqqqOY6cL1aY9hXNky5I0lSSPjdF0Uah8bm0yvRUkj0WaCBGRFHVPaxUI5syREdhzMc5AUIsjXLjuIi0h6IuPKiBJz2LioiOW+UBsWVwtMjJWri2GxvTPjkRjpqPYmLNI6N0ZWSCskS1MNLsZMlcTYpy0UpMqI3KVyyojVlkY9YeyWLKittiUFpkR9hwjY52yrNgMVuNlFptpl0rg6z0lqZTlGo5MfR29WaNZjzdCP0llVdrYpabpg6So5lrKgo1HR3o1z0kitderAchGNdNXI5LVQRLVQc6IjSRqEc6NjcxzZqjmEnAVDFdGOJJG3Mc5s1RVZFVB1oYKVowDKRzXpjcOvEY5lsao9kHAko0exjfFIuaGMclYQAjHFsKNcRIwScbWvLWxq+2K+49Ekak2UekxINdNVEJlwNWe4bMPcx9bI4bkyKitmZUcKjon2vIrFpd0jFjKxWvtLQcojXCitRtssrUSIc5kmPKgLWzXo5KjVrkcK1CokmK7WOLS5UdMIpHrbCOaMMpG6th0cmPI17WzeZiPShGtSqKzCxrS0zUfGwioUNVyg5VpsTRxSY9hg9YiNXrOSmdNEo1HzIoyqbaIHJJNY5YhjndTTTd6twxjqsPyuvcPWd6ye5V28DgyfG9jlwJlVj2OPb7HdocuKxyX+1otpLFMtmpnTFfnetFxbnR7tIbw0PYIKV2HI1MlHCRiistjVHExGK61WskW9Y3xlMbnIWgR0cnMekQI0tD2K5iax6wjRxNWo9FGirJiok4kciTLlatoQe3JVrmoOGmSVYLNBEUa9jqw1iyTijapaWgRAxxMDVSaLHJGhWq2cYx75nFr7Yb/TRHITcka5CMcTVJWutZyDolxG2M0stLLF1c1b4HClrI5jr3VWOVnRpXKOR9kbmquAVs1XJEOY+OsuHNvAI6t2vRIl6izkQHYoEa+MjlY6lmKq0lGyMx5FRUQgFYcsbqZJEjEPI3Lvcxqz2uWsjaiGuyySRtZQbU1zQPG0yJM1kXqCKemyPa7HtzrE/HuTMldrdC3pXUt9NsdQmStGVjL4IqeufKiSrjjDDSVGL5OdFcK+r1r2h1iod7h51LLBTDNYbsldnBJ7vUbGnTMyGyavWwuh2FVdLyGFW7KLXsa2OUGT0t64+26U8RBlGOMjPtrLOfNi8/1OdrUR6/VjQMmJBFzwIjZqKrZKjTNjUc2kMc4VY1yKIj2yEcTjRHDGjkSJYORVGvYorVbMTQqZMYqKuwc0Vr1zYYlRB6It4jUKwohkDXkInoMStjcq1FTJCvjXEVj4bVe18arXNLUGq6L4zfbFfI573RLMuVQHIXh6I6ZHDoy3vbOj+6flv0nmRnV+IfO/ovMuN9+VXY0vOiXuXB/aeS5RXI7H7byESo7scRyItbAJeHAykuUSauRFsGSGLKiuKyAs5GSIlbDkdjkY9MkqIlMgOWtI3ouO45GiqkmOWD0pkidNAIoUhEdJbMMG1yvfG2D2sUHItrSPY7Bnmkolw7dbA+rx7dOxS8vqaGTDnq6mkTB05XMkreR9O/D0GEtPWCaMY3KxFpbfdcSYbZktFb+h43L7PLTVxTWyprcmHFs8uCcT6VSTWu80z6/ftyLDmwC0bF1Z1fJZ76w+NPov1/n/XuqtreJ25yvXPxG9EOFpnXUG56zY0uf6XoemRz6VeUzF6zzozXOj6jXLq7bWv1tKJtXD7zjCbvwy2PAlqOg8kc5J17ytalrGLW3ph2B4c/T5m4fm/nviL6pVvxDoD064wbOlS4bIZ9Su2tsxj5Zk2p00x8Ix5fa4yWNd2WycGonxklSs3jFNBJ1pr7K0XJkWwKtNpuzV2aljN22m0amezYlo12egPKNaasE25a2pG9CVqnNyZ1goNy3p6acZO6B59vDRzIs+Jypa1yRiRGrNUVHK4rfrJe40Xvikkqos2a9xazJWJNHuHRkj7n4c7h8F6vdOAbMxr86/bb7leCSVxZ9dMEWcFHovoi+7+Xz31j676h9bqeZkHUfP31LxWOj2+++eDXpBqqkwqNWtnqiVmQYtbjkbF3o4SiD4sjFVLhUqGzR4cygysSLG6tmyItLKNIlwgugr4vHHK7HaB0paRrCLyxq6txzTFlHD752teuKzCVtM1W2F2PfJJmUyqrX488z1fo9NXOk1uuxtS3D0KeC4wTjpatLjOfF6Ckd0/niVexLzze1gOT0NNoe8zazXnBeX77OsftON+m/PcnQfMmVej8DuDF6HOOb18bxPPsV4XutZ+inA/e/U0O0vNH2L5d7nz3h7z/APUDzf2OZ0b6O+WfR+7w+6JeYapTyw+hLzS9uZr86X0VedHqRF/nA+hv52Pd3U9J5t8denGq67Hs387f0YfLRn0uk+kfMnubHt91aD3lRZ+b4QscYu9lP0+fMH9Pk8X5Ytnawpo6Hrv6JfMJ9QWXkfMV7TeOPuHXY4t9Ovmx9tZxYXqXU/DsZPp9+bz6XPnRvh+i7xk9W9FNfwaX2I8vKdH1oxvauj8vP5c95Pmz+hVHzf8AsL4geqNdjoXxN98+C74vQnh70I8h0aI9v+aLBkrx57efMx7PRbzD9EsYwG89vecnrLxnGL0c+YT6LfnHmfUk4U7qpb1G+dr6HPFW+DhljltuMUJo1JY7Qija0VzCZxi/Y/fq88lasyqtdaUe10nDXrvBs1d3Vx96C/I/odNjttn+OfVUzLWsFq78xPXV8wV2RmevMmwYt6vxiPUprzlfuOxdPpeQT9ran/U3xhUGd/y71c2lpIXizRHWI8cIOkxZo0VMVwUkqtdWY3tMFhVRMiRpW0jHJWqqx7IgIhRGryjUreZiNtkc+JKZ6mOCoxTBK5qVjR0SrmT0ztlc3FuK+WfF0qCeqjxZkrqZcG5I2Zmt05309Vg6aOYzX2pnPm1OxKyou/P9Pj1tzqonnY9n2F6/6Hgt6Yng2XZufiuUWvG+/wCb3DSZpg/nvpEep8/l9B8wxCxNsG3y9/U+mqTzH2DZuB0jPQfLci7x86fdbreEwLxF+pDzw3Ob5t7R9ZMZpscV6w9mvmaT6s13X2VTg8lPT/wE+lPJh+W5nt1rg8hPqH+a36vK5vDfRHpNwnz/AFv0J/M19VvgPs8z0N4X6pzyY85fQHXvW81+a5J4sfbyv6ePIr3DzcH5Fab1r82cXR1z7N+M+5rR27vP0j+e3JzONvcTw59x67HC/EfttrhHox80/pb55Ke/nhZ9IXlJbWwbrG88jJ4J+j/TvDxiHrb5D+584/kk9TuQPYBs6C8svebwgU9l/Pb2T4/thwW6eZnvpa/zae1enuvpjibHOF/aHJaw+Pf0ZcDqehfkF6v+FdafRX81v0kecs02/wAAevnnqnynBb7bUCcbWvS1UYohHtXHGMXuw5BOiqqt0cwxaQa6QqPSr27j5vRyfNK7Fvzz9yu7ce1/sZusLPzTR0v0bnPJJTJ3BYuYL/pxtHq3h/Ul9z2dvem+ufD8vg/yE+grxo+tcrSKK37/APH3jXzDEVK2WRj6xG8cyCtdUjmrXKqtS1VEfgyxSq3GGD4MGTRLVakCRpXMDXpBG1K9olUjSLvcx83VR2LPNUUj8G9XxUdVh33y0McRXtpKnHuOlVMO25InWvM4n1em1XS6vSo6qdNbeHrW6PdgrVZzvRue9+Hau2KJb/T/ACax25tm9R8hyrDM1oce9nlu1pV8r6D0VzxeLTi6OC1l4t3qPhuNwXek2uMxl0oMPRqcywfMtXqLtqqvXmfsMdNfKvn9zFdI7wx3u/PNVPznCdzk7pwuzYdl5+LNqIe34DYuF2OimtfvrQc+PY65xzD7jzfabPxvE25VZsPV6F4zTWS5atY9LRsG56qJw7SwG0yRjbV7c96r62qfA/tLiFDPcjxb+gqcXnTxN7BeLUTYrtbGRs7TNWRTTYuAwkU2frulVXNL/qhZZHlesVmdma/om5KbSpdbLnxx5JjqJ2trm3MUdsjW7LtrpqyNW9WhDHGT5FrQRlNXhjc2NrnNiWo+OsuBFBqOvVqsInGsgx/II56PaXuqglXIor4a7Dt7N2rh+9Pg/wBq0eegG0fK9bzp3d15e+ZTkyk68wLRty/c90Xauxb88wzaOriqcY2LsCmt4jbn9N/O32fX7s5Q4d6xw4fM+Horn37v4OnliX2PzoRzZhzZWRKqFbOGumyKNwZxVJqjliwS9WGWqqNxS5BYs1UbVIxTJlZMx2MiDbHoiUu8jbGaVVjxXdI1sZpIh66Ti4NueaCr1eqxt3iwdW0zXObHktzaqPDuQz1MePanasmj25pWrzvQJWQpj6dbLBcOZ6Gnmlptbo2jE7xhv0P89290t76vicQsu8NLsFJmdJl+TCa+3Xp/n+o2Vi1fsHV7eisy3FkPO7FjxrZFbwPoWGXhcb0vTzY5heAes+NdB5DzDftvyXQmFY3tnneww20Z7i/M9lYcWzrG/QfMdVWHYuHe3+A49VXlmbSsdSymmdsX/D8y53uUUXBna0S9RzY89BFbaiq1Yq2RrJxySQooIE1dLCqJYWpaqiKNjnjtRr4ZJo1zHRCK18RGj2xCxhmhwGWrRr740HMiJIx1oYj4rVHsTFEkTkvZUVswiiTiUVqUQLUWNy2MVxFMXv1hv2PTcMdeVc19oEV0THUxLTY7j7T8f/Zb84/Wd1wWer8H0coxSx3GWFa32tjEdTHM4g2Zgy4bie3rdqWnzLHc/wAGO04DPgNtjmzj/wBA9W+s7XGFmz6we862o6nMfS/2XxbyssvqPwN6jxOr1cegwDoZYlJGNx1kRrl3rEa2RWvZeqDip1XQ7n4fsaXN+1Nb+T73m69q/Q/myOY8ikaxZwizjaPbTMqpNTMxzXxsNVWYsszW11NqC5R0OvuXCG3SzeriidF6l1NLj2qi5WibT6d9Sz13K9bOy6Gj6Cmqaeu1uk9ldV8z01rK9tNqOmuOU6voND3TPMP9L4O43TG8j6XhcS13t2m6/hdJZ7t1OF9Lq7LkeCcX6Nmtjxp/d+P53etR7Mtp53Q45j/L9LUWC7Xnt+FxHT+9Juz5rXOf3my+L+15RYqzH9zzNzodW51tWhwfauF6+1rxtwxX2n5+pbPc7b1fKW0fLfBtLKMcyThfUolGZ9Acj7xEOimqCty4WvI5xuehNka6JrqrmTZyhFY5WPmjGujY3MVEtdHKq0RWNAXYNRUURHFyAVlFjdfGohlgFahY5oFHNc2LKiJOJFQqFe2YRFYlWqyKORFzVRHtYsYyDH8ixaqPYs2USTJCqiRDxjl3d58GZjwep6+ZzHln5a+wpcslp8dMb19kmJ6XVybMMWynUy3nP+ctUbeL0cyLx51T23qbzHx7k25vy6N6mzDc2fOjLfSjEsXU85avEMW+i0tJHN9f/MrHDSRWlbgixVyKmPKx7kxmLne9+N1Nd5tuvb3yH9Ccadc8e6/7XkqjTxXfUPjtEx7NiHo5tZfC5KQDXLIkjWy9YnUzOEEo5anBtTUcSUzJKhJXC0zSMiSZmmpkrauWjnpv1VdaqrS7F8uWK1XE9xmE+PXfzX0CorLfVaXpKhat2n2TLsbuOv7XW1hyKt9d8hwu+7cbodHG5q+16XTlu2Fnb8bsbWWV0Gvlgya2UmfRyHEdfWLZ4N6y7nrLvc/n3eWOLnHl/qmPZzdLDzfRW7DtiP2dLnrKtwYfp+ktmN2u0b+tedYZzrzv/LGUNPWem+KUkMlpz86aCmknDn+wsF