Electromagnetic Vortices. Группа авторов

Читать онлайн.
Название Electromagnetic Vortices
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119662877



Скачать книгу

Uniform circular array (UCA) Refs. [33, 62,102–109] RF OAM Photo depicts Uniform circular array. Photo credit: [102] Holographic gratings Refs. [110–113] Optical and RF OAM Photo depicts Holographic gratings. Photo credit: [110] Reflectarray antennas Refs. [5,114–117] RF OAM Photo depicts Reflectarray antennas. Photo credit: [114]

Reference Year Main contribution
[1] 1909 Theoretically studied angular momentum of circularly polarized waves
[2] 1936 Experimentally studied the SAM of light and demonstrated that SAM can cause the rotation of a mechanical system
[3] 1992 Recognized that light beams with an azimuthal phase dependence of ejlϕ carrying OAM
[17] 2004 Conducted the first experiment on OAM free‐space optical communications
[76] 2006 Reported the generation of an OAM‐carrying optical vortex in optical fibers
[62] 2007 Numerically showed that OAM can be used in the radio frequency domain
[23] 2012 Performed the first experimental test of encoding multiple channels on the same radio frequency through OAM
[80] 2013 Conducted the first OAM‐MDM experiment suggesting that OAM could provide an additional degree of freedom for data multiplexing in future fiber networks
[5] 2018 Suggested a potential application that takes advantage of the OAM cone‐shaped pattern in the far‐field
Schematic illustration of the generation of OAM aperture field.

      The equivalent magnetic current density is calculated from [122, eq. 6‐129b]:

      (1.A.2)ModifyingAbove upper M With right-arrow Subscript s Baseline equals minus ModifyingAbove z With ampersand c period circ semicolon times ModifyingAbove upper E With right-arrow left-parenthesis rho prime comma phi Superscript prime Baseline right-parenthesis equals minus ModifyingAbove y With ampersand c period circ semicolon upper E left-parenthesis rho Superscript prime Baseline right-parenthesis e Superscript minus italic j l phi Super Superscript prime Superscript Baseline comma 0 less-than rho prime less-than a period

      The radiation integrals can be written as [122, eqs. 6‐125c, 6‐125d]:

      (1.A.3)upper L Subscript theta Baseline equals minus cosine theta sine phi integral Subscript 0 Superscript a Baseline upper E left-parenthesis rho prime right-parenthesis left-bracket integral Subscript 0 Superscript 2 pi Baseline e Superscript minus italic j l phi prime Baseline e Superscript italic j k 0 rho prime sine theta cosine left-parenthesis phi minus phi prime right-parenthesis Baseline d phi prime right-bracket rho prime d rho Superscript prime Baseline

      (1.A.4)upper L Subscript phi Baseline equals minus cosine phi integral Subscript 0 Superscript a Baseline upper E left-parenthesis rho Superscript prime Baseline right-parenthesis left-bracket integral Subscript 0 Superscript 2 pi Baseline e Superscript minus italic j l phi Super Superscript prime Superscript Baseline e Superscript italic j k 0 rho prime sine theta cosine left-parenthesis phi minus phi Super Superscript prime Superscript right-parenthesis Baseline d phi Superscript prime Baseline right-bracket rho prime d rho Superscript prime Baseline period

      Using the integral identity [5, eq. (5)]:

      (1.A.5)integral Subscript 0 Superscript 2 pi Baseline e Superscript minus italic j l phi Super Superscript prime Superscript Baseline e Superscript italic j k 0 rho prime sine theta cosine left-parenthesis phi minus phi Super Superscript prime Superscript right-parenthesis Baseline d phi Superscript prime Baseline equals 2 pi left-parenthesis negative j right-parenthesis Superscript l Baseline upper J Subscript l Baseline left-parenthesis k 0 sine theta rho Superscript prime Baseline 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=