Reservoir Characterization. Группа авторов

Читать онлайн.
Название Reservoir Characterization
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119556244



Скачать книгу

target="_blank" rel="nofollow" href="mailto:[email protected]">[email protected]

Part 2 GENERAL RESERVOIR CHARACTERIZATION AND ANOMALY DETECTION

      A Comparison Between Estimated Shear Wave Velocity and Elastic Modulus by Empirical Equations and that of Laboratory Measurements at Reservoir Pressure Condition

       Haleh Azizia1*, Hamid Reza Siahkoohi2, Brian Evans3, Nasser Keshavarz Farajkhah4 and Ezatollah KazemZadeh4

       1Department of Geophysics, Science and Research Branch, Islamic Azad University, Tehran, Iran

       2Institute of Geophysics, University of Tehran, Tehran, Iran

       3Department of Petroleum Engineering, Curtin University, Perth, Australia

       4Research Institute of Petroleum Industry, Tehran, Iran

       Abstract

      Keywords: Wave velocity estimate, elastic waves, the coefficients of elasticity, rock physics, reservoir conditions, Gassman relations, Greenberg – Castagna theory, injecting carbon dioxide, sandstone

      Study of propagation of shear and compressional waves give useful information and constitutional characteristics of hydrocarbon reservoirs, such as lithology and pore fluid type. This information is very important for reservoir development and recovery, and especially for future decision making. On the other hand, the behavior of reservoir rocks geomechanics, play an important role in the design and implementation of drilling, production planning and sustainability of oil and gas wells.

      Having physical geology information such as density, porosity, compressional and shear wave velocities are required to successfully perform the above-mentioned projects. This is usually the case that the information about shear wave velocity is not readily available compared with other data. Therefore, theoretical or experimental approaches are necessary to estimate this velocity.

Schematic illustration of the common methods for estimating the shear wave velocity.

      Laboratory measurement of shear wave velocity in a core is known as a standard procedure and the obtained velocities are comparable with that of the other methods. There are other field methods to estimate shear wave velocity such as Dipole Shear Sonic Imager and sonic logs. Although these methods are common, they must be performed in a large number of wells to obtain the velocity distribution in the entire field, and core extraction or running of sonic tools in a large field is very expensive [4]. Another common method to estimate the shear wave velocity is based on theoretical evaluation and modeling. In the past few decades, several empirical formulas have been introduced for estimating the shear wave velocity in rocks with different lithology, based on physical parameters of rock, especially the P-wave velocity and porosity. Many scientists, including Pickett [5], Milholand [6], Domenico [7], Thomsen [8], Han [9], Krief [10], Castagna [11] and Greenberg [12] have done very useful research in this area and various relationships have been developed and presented. These relations are valid for the saturated rocks with brine.

      Gassman formulas have been introduced to extend these experimental formulas to other fluids contents. In 1986, Han offered empirical regression formulas for elastic waves in laboratory condition which would estimate the speed based on porosity and clay content. In 1989, Eberhart added the pressure parameter to Han’s equation for shale sand rocks. Years before, Tosaya and Nur [13] and Castagna et al. [11] presented empirical formulas for shale sand rocks based on velocity, porosity and clay parameters.

      Other methods are artificial intelligence techniques such as neural networks and fuzzy logic [14–16]. Although their estimates are associated with less error, these methods also present a specific model for each different field, and the results from one field cannot be applied to other fields.

      Currently, there is no unique empirical formula or comprehensive theory that could be utilized to determine the elastic wave velocity and elastic coefficients at different environmental conditions, type of fluid and rock. In this paper, experimental data (elastic wave propagation velocity) has been gathered using a sample saturated with water and supercritical carbon dioxide at different reservoir pressure. Then while the common fluid (brine) was replaced by critical CO2, the elastic wave velocity values were calculated using Gassman formulas and Greenberg - Castagna empirical equations and the results were compared with direct laboratory observations.

      2.1.2 Estimating the Shear Wave Velocity

      A major part of the seismic signal analysis in regards to rock physics models relates shear wave velocity to mineralogy and porosity. Rock physics analysis based on logs and cores and the relation of these to the geological model, leads to the establishment of a relationship between velocity and porosity. Formulation of the relation between rock velocity and rock