Mathematical Programming for Power Systems Operation. Alejandro Garcés Ruiz

Читать онлайн.
Название Mathematical Programming for Power Systems Operation
Автор произведения Alejandro Garcés Ruiz
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119747284



Скачать книгу

cell left parenthesis x minus 5 right parenthesis squared plus left parenthesis y minus 8 right parenthesis squared equals 0 comma end cell cell a r g m i n end cell cell left parenthesis x minus 5 right parenthesis squared plus left parenthesis y minus 8 right parenthesis squared equals left square bracket 5 comma 8 right square bracket end cell end table"/> (2.5)

      

(2.6)

      As aforementioned, the operator min returns a number while the operator argmin can return a vector. Two or more points could produce the same minimum. In that case, the argmin is not unique.

      But, what exactly does it mean the best solution? And, what characteristics should have both the sets and the functions involved in the problem? Some mathematical sophistication is required to answer these questions. Finding the best solution in a set implies comparing one element with the rest of the set elements. A comparison is a relation of the form xy or xy. However, not all sets allow these types of comparisons; those that enable it are called ordered sets. For instance, the real numbers and the integer numbers are all ordered set. However, complex numbers are non-ordered because such a comparison is not possible (what number is higher: zA = 1 + j or iB = 1 − j?).

      We usually compare values in the output set since our objective is to minimize or maximize the objective function. It is also possible to compare values in Ω when it is an ordered set. However, a comparison between elements of the input set may be different in the output set. A function f is monotone (or monotonic) increasing, if xy implies that f(x) ≤ f(y), that is to say, the function preserves the inequality. Similarly, a function is monotone decreasing if xy implies that f(x) ≥ f(y), that is to say, the function reverses the identity.

      Example 2.2

      The function f(x) = x2 is not monotone; for example −3 ≤ 1 but f(−3)≰f(1). Nevertheless, the function is monotone increasing in R++. In this set, 4 ≤ 8 implies that f(x) ≤ f(y) since both 4 and 8 belong to R++.

      An ordered set Ω ∈

n admits the following definitions:

       Supreme: the supreme of a set, denoted by sup(Ω), is the minimum value greater than all the elements of Ω.

       Infimum: the infimum of a set, denoted by inf(Ω), is the maximum value lower than all the elements of Ω.

      The supreme and the infimum are closely related to the maximum and the minimum of a set. They are equal in most practical applications. The main difference is that the infimum and the supreme can be outside the set. For example, the supreme of the set Ω = {x : 3 ≤ x ≤ 5} is 5 whereas its maximum does not exists. It may seem like a simple difference, but several theoretical analyzes require this differentiation.

      Some properties of the supreme and the infimum are presented below:

      

(2.7)

      

(2.8)

      

(2.9)

      

(2.10)

      Moreover, the last case implies that:

      

(2.11)

      Example 2.3


Set sup max inf min