Название | Wetland Carbon and Environmental Management |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119639336 |
141 Gauci, V., Matthews, E., Dise, N. B., Walter, B., Koch, D., Granberg, G., & Vile, M. A. (2004). Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proceedings of the National Academy of Sciences, 101(34), 12583–12587.
142 Gauci, V., Gowing, D. J. G., Hornibrook, E. R. C., Davis, J. M., & Dise, N. B. (2010). Woody stem methane emission in mature wetland alder trees. Atmospheric Environment, 44(17), 2157–2160. https://doi.org/10.1016/j.atmosenv.2010.02.034
143 Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B., & Silliman, B. R. (2011). The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change, 106(1), 7–29. https://doi.org/10.1007/s10584‐010‐0003‐7
144 Glaser, B., & Birk, J. J. (2012). State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de índio). Geochimica et Cosmochimica Acta, 82, 39–51. https://doi.org/10.1016/j.gca.2010.11.029
145 Glaser, P. H., Janssens, J. A., & Siegel, D. I. (1990). The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota. The Journal of Ecology, 78(4), 1021. https://doi.org/10.2307/2260950
146 Gleason, R. A., & Euliss, N. H. J. (1998). Sedimentation of prairie wetlands. Great Plains Research, 8(1), 97–112.
147 Göckede, M., Kwon, M. J., Kittler, F., Heimann, M., Zimov, N., & Zimov, S. (2019). Negative feedback processes following drainage slow down permafrost degradation. Global Change Biology, 25(10), 3254–3266. https://doi.org/10.1111/gcb.14744
148 González, E., Cabezas, Á., Corenblit, D., & Steiger, J. (2014). Autochthonous versus allochthonous organic matter in recent soil C accumulation along a floodplain biogeomorphic gradient: An exploratory study. Journal of Environmental Geography, 7(1–2), 29–38. https://doi.org/10.2478/jengeo‐2014‐0004
149 Goodrich, J. P., Varner, R. K., Frolking, S., Duncan, B. N., & Crill, P. M. (2011). High‐frequency measurements of methane ebullition over a growing season at a temperate peatland site. Geophysical Research Letters, 38(7), 1–5. https://doi.org/10.1029/2011GL046915
150 Gorham, E. (1991). Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1(2), 182–195. https://doi.org/doi.org/10.2307/1941811
151 Gribsholt, B., Kostka, J. E., & Kristensen, E. (2003). Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Marine Ecology Progress Series, 259, 237–251. https://doi.org/10.3354/meps259237
152 Griffin, T. M., Rabenhorst, M. C., & Fanning, D. S. (1989). Iron and trace metals in some tidal marsh soils of the Chesapeake Bay. Soil Science Society of America Journal, 53(4), 1010–1019. https://doi.org/10.2136/sssaj1989.03615995005300040004x
153 Grossart, H. P., Frindte, K., Dziallas, C., Eckert, W., & Tang, K. W. (2011). Microbial methane production in oxygenated water column of an oligotrophic lake. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19657–19661. https://doi.org/10.1073/pnas.1110716108
154 Guimond, J. A., Seyfferth, A. L., Moffett, K. B., & Michael, H. A. (2020). A physical‐biogeochemical mechanism for negative feedback between marsh crabs and carbon storage. Environmental Research Letters, 15(3). https://doi.org/10.1088/1748‐9326/ab60e2
155 Gupta, V., Smemo, K. A., Yavitt, J. B., Fowle, D., Branfireun, B., & Basiliko, N. (2013). Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Environmental Science and Technology, 47(15), 8273–8279. https://doi.org/10.1021/es400484t
156 Gurney, K. E. B., Clark, R. G., Slattery, S. M., & Ross, L. C. M. (2017). Connecting the trophic dots: Responses of an aquatic bird species to variable abundance of macroinvertebrates in northern boreal wetlands. Hydrobiologia, 785(1), 1–17. https://doi.org/10.1007/s10750‐016‐2817‐4
157 Güsewell, S., & Freeman, C. (2005). Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N:P ratios. Functional Ecology, 19(4), 582–593. https://doi.org/10.1111/j.1365‐2435.2005.01002.x
158 Güsewell, S., & Verhoeven, J. T. A. (2006). Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant and Soil, 287(1–2), 131–143. https://doi.org/10.1007/s11104‐006‐9050‐2
159 Hackney, C. T., & Bishop, T. D. (1981). A note on the relocation of marsh debris during a storm surge. Estuarine Coastal and Shelf Science, 12(5), 621–624. https://doi.org/10.1016/S0302‐3524(81)80087‐4
160 Haese, R. R., Wallmann, K., Dahmke, A., Kretzmann, U., Müller, P. J., & Schulz, H. D. (1997). Iron species determination to investigate early diagenetic reactivity in marine sediments. Geochimica et Cosmochimica Acta, 61(1), 63–72. https://doi.org/10.1016/S0016‐7037(96)00312‐2
161 Hall, S. J., & Silver, W. L. (2013). Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Global Change Biology, 19(9), 2804–2813. https://doi.org/10.1111/gcb.12229
162 Hall, S. J., Silver, W. L., Timokhin, V. I., & Hammel, K. E. (2016). Iron addition to soil specifically stabilized lignin. Soil Biology and Biochemistry, 98, 95–98. https://doi.org/10.1016/j.soilbio.2016.04.010
163 Hanley, T. C., Kimbro, D. L., & Hughes, A. R. (2017). Stress and subsidy effects of seagrass wrack duration, frequency, and magnitude on salt marsh community structure. Ecology, 98(7), 1884–1895. https://doi.org/10.1002/ecy.1862
164 Hansel, C. M., Fendorf, S., Sutton, S., & Newville, M. (2001). Characterization of Fe plaque and associated metals on the roots of mine‐waste impacted aquatic plants. Environmental Science and Technology, 35, 3863–3868.
165 Harrison, R. B., Jones, W. M., Clark, D., Heise, B. A., & Fraser, L. H. (2017). Livestock grazing in intermountain depressional wetlands: effects on breeding waterfowl. Wetlands Ecology and Management, 25(4), 471–484. https://doi.org/10.1007/s11273‐017‐9529‐z
166 Harriss, R. C., Sebacher, D. I., & Day, F. P. (1982). Methane flux in the Great Dismal Swamp. Nature, 297(5868), 673–674. https://doi.org/10.1038/297673a0
167 Hartman,