Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulations. Sheila Annie Peters

Читать онлайн.
Название Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulations
Автор произведения Sheila Annie Peters
Жанр Медицина
Серия
Издательство Медицина
Год выпуска 0
isbn 9781119497790



Скачать книгу

rel="nofollow" href="https://doi.org/10.1007/BF00265978">https://doi.org/10.1007/BF00265978.

      6 Chu, V. et al. (2009). In vitro and in vivo induction of cytochrome P450: A survey of the current practices and recommendations: A Pharmaceutical Research and Manufacturers of America perspective. Drug Metabolism and Disposition 37 (7): 1339–1354. https://doi.org/10.1124/dmd.109.027029.

      7 Dunne, J. et al. (2011) ‘Extrapolation of adult data and other data in pediatric drug‐development programs’, Pediatrics, 128(5), p. e1242. doi: 10.1542/peds.2010‐3487.

      8 El‐Sankary, W. et al. (2001). Use of a reporter gene assay to predict and rank the potency and efficacy of CYP3A4 inducers. Drug Metabolism and Disposition 29 (11): 1499–1504.

      9 EMA (2013). Guideline on the investigation of drug interactions. In: London. https://www.ema.europa.eu/en/documents/scientific‐guideline/guideline‐investigation‐drug‐interactions‐revision‐1_en.pdf.

      10 Fahmi, O.A. and Ripp, S.L. (2010). Evaluation of models for predicting drugdrug interactions due to induction. Expert Opinion on Drug Metabolism and Toxicology 6 (11): 1399–1416. https://doi.org/10.1517/17425255.2010.516251.

      11 Franklin, M.R. (1991). Cytochrome P450 metabolic intermediate complexes from macrolide antibiotics and related compounds. Methods in Enzymology 206 (C): 559–573. https://doi.org/10.1016/0076‐6879(91)06126‐N.

      12 Galetin, A. et al. (2006). Prediction of time‐dependent CYP3A4 drug‐drug interactions: Impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition. Drug Metabolism and Disposition 34 (1): 166–175. https://doi.org/10.1124/dmd.105.006874.

      13 Grime, K.H. et al. (2009). Mechanism‐based inhibition of cytochrome P450 enzymes: An evaluation of early decision making in vitro approaches and drug‐drug interaction prediction methods. European Journal of Pharmaceutical Sciences 36 (2–3): 175–191. https://doi.org/10.1016/j.ejps.2008.10.002.

      14 Grimm, S.W. et al. (2009). The conduct of in vitro studies to address time‐dependent inhibition of drug‐metabolizing enzymes: A perspective of the Pharmaceutical Research and Manufacturers of America. Drug Metabolism and Disposition 37 (7): 1355–1370. https://doi.org/10.1124/dmd.109.026716.

      15 Harper, T.W. and Brassil, P.J. (2008). Reaction phenotyping: Current industry efforts to identify enzymes responsible for metabolizing drug candidates. AAPS Journal 10 (1): 200–207. https://doi.org/10.1208/s12248‐008‐9019‐6.

      16 Ho, R.H. and Kim, R.B. (2005). Transporters and drug therapy: Implications for drug disposition and disease. Clinical Pharmacology and Therapeutics 78 (3): 260–277. https://doi.org/10.1016/j.clpt.2005.05.011.

      17 Hollenberg, P.F., Kent, U.M., and Bumpus, N.N. (2008). Mechanism‐based inactivation of human cytochromes P450s: Experimental characterization, reactive intermediates, and clinical implications. Chemical Research in Toxicology: 189–205. https://doi.org/10.1021/tx7002504.

      18 Inotsume, N. et al. (1990). The inhibitory effect of probenecid on renal excretion of famotidine in young, healthy volunteers. Journal of Clinical Pharmacology 30 (1): 50–56. https://doi.org/10.1002/j.1552‐4604.1990.tb03438.x.

      19 Ivanyuk, A. et al. (2017). Renal drug transporters and drug interactions. Clinical Pharmacokinetics: 825–892. https://doi.org/10.1007/s40262‐017‐0506‐8.

      20 Jing, X. et al. (2020) ‘Update on therapeutic protein–drug interaction: Information in labeling’, Clinical Pharmacokinetics. 59(1), pp. 25–36. doi: 10.1007/s40262‐019‐00810‐z.

      21 Jones, N.S. et al. (2020). Complex DDI by fenebrutinib and the use of transporter endogenous biomarkers to elucidate the mechanism of DDI. Clinical Pharmacology and Therapeutics 107 (1): 269–277. https://doi.org/10.1002/cpt.1599.

      22 Kalgutkar, A.S., Obach, R.S., and Maurer, T.S. (2007). Mechanism‐based inactivation of cytochrome P450 enzymes: Chemical mechanisms, structure‐activity relationships and relationship to clinical drug‐drug interactions and idiosyncratic adverse drug reactions. Current Drug Metabolism 8 (5): 407–447. https://doi.org/10.2174/138920007780866807.

      23 Kanebratt, K.P. and Andersson, T.B. (2008). HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans. Drug Metabolism and Disposition 36 (1): 137–145. https://doi.org/10.1124/dmd.107.017418.

      24 Kato, M. et al. (2005). The quantitative prediction of in vivo enzyme‐induction caused by drug exposure from in vitro information on human hepatocytes. Drug Metabolism and Pharmacokinetics 20 (4): 236–243. https://doi.org/10.2133/dmpk.20.236.

      25 Kenny, J. R., Ramsden D., Buckley, D. B. et al. (2018). Considerations from the Innovation and Quality Induction Working Group in Response to Drug‐Drug Interaction Guidances from Regulatory Agencies: Focus on CYP3A4 mRNA In Vitro Response Thresholds, Variability, and Clinical Relevance. Drug Metabolism and Disposition. 46 (9): 1285–1303. https://doi.org/10.1124/dmd.118.081927.

      26 Kirch, W. et al. (1987). Pharmacokinetics of bisoprolol during repeated oral administration to healthy volunteers and patients with kidney or liver disease. Clinical Pharmacokinetics 13 (2): 110–117. https://doi.org/10.2165/00003088‐198713020‐00003.

      27 Lau, Y.Y. et al. (2007). Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clinical Pharmacology and Therapeutics 81 (2): 194–204. https://doi.org/10.1038/sj.clpt.6100038.

      28 LeCluyse, E. et al. (2000). Expression and regulation of cytochrome P450 enzymes in primary cultures of human hepatocytes. Journal of Biochemical and Molecular Toxicology 14 (4): 177–188. https://doi.org/10.1002/(SICI)1099‐0461(2000)14:4<177::AID‐JBT1>3.0.CO;2‐4.

      29 Luo, G. et al. (2005). CYP3A4 induction by xenobiotics: biochemistry, experimental methods and impact on drug discovery and development. Current Drug Metabolism 5 (6): 483–505. https://doi.org/10.2174/1389200043335397.

      30 MHLW (Ministry of Health, Labour and Welfare). 2018. Guideline on drug interaction for drug development and appropriate provision of information (final draft), MHLW, Tokyo, Japan. https://www.pmda.go.jp/files/000228122.pdf.

      31 Mills, J.B. et al. (2004). Induction of drug metabolism enzymes and MDR1 using a novel human hepatocyte cell line. Journal of Pharmacology and Experimental Therapeutics 309 (1): 303–309. https://doi.org/10.1124/jpet.103.061713.

      32 Obach, R.S., Walsky, R.L., and Venkatakrishnan, K. (2007). Mechanism‐based inactivation of human cytochrome P450 enzymes and the prediction