Техническая литература

Различные книги в жанре Техническая литература

Microstructural Characterization of Materials

David Brandon

Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.

Physics of Functional Materials

Hasse Fredriksson

Written by academics with more than 30 years experience teaching physics and material science, this book will act as a one-stop reference on functional materials. Offering a complete coverage of functional materials, this unique book deals with all three states of the material, providing an insightful overview of this subject not before seen in other texts. Includes solved examples, a number of exercises and answers to the exercises. Aims to promote understanding of the subject as a basis for higher studies. The use of mathematically complicated quantum mechanical equations will be minimized to aid understanding. For Instructors & Students: Visit Wiley’s Higher Education Site for: Supplements Online Resources Technology Solutions Instructors may request an evaluation copy for this title.

Additives and Crystallization Processes

Keshra Sangwal

Crystal growth technology involves processes for the production of crystals essential for microelectronics, communication technologies, lasers and energy producing and energy saving technology. A deliberately added impurity is called an additive and in different industries these affect the process of crystal growth. Thus, understanding of interactions between additives and the crystallizing phases is important in different processes found in the lab, nature and in various industries. This book presents a generalized description of the mechanisms of action of additives during nucleation, growth and aggregation of crystals during crystallization and has received endorsement from the President of the International Organization for Crystal Growth. It is the first text devoted to the role of additives in different crystallization processes encountered in the lab, nature and in industries as diverse as pharmaceuticals, food and biofuels. A unique highlight of the book are chapters on the effect of additives on crystal growth processes, since the phenomena discussed is an issue of debate between researchers

Computational Mesomechanics of Composites

Leon L. Mishnaevsky, Jr.

Mechanical properties of composite materials can be improved by tailoring their microstructures. Optimal microstructures of composites, which ensure desired properties of composite materials, can be determined in computational experiments. The subject of this book is the computational analysis of interrelations between mechanical properties (e.g., strength, damage resistance stiffness) and microstructures of composites. The methods of mesomechanics of composites are reviewed, and applied to the modelling of the mechanical behaviour of different groups of composites. Individual chapters are devoted to the computational analysis of the microstructure- mechanical properties relationships of particle reinforced composites, functionally graded and particle clusters reinforced composites, interpenetrating phase and unidirectional fiber reinforced composites, and machining tools materials.

Supramolecular Materials and Technologies

David Reinhoudt N.

Perspectives in Supramolecular Chemistry relates recent developments and new exciting approaches in supramolecular chemistry. The series covers all areas from theoretical and modelling aspects through organic and inorganic chemistry and biochemistry to materials, solid-state and polymer sciences reflecting the many and varied applications of supramolecular structures in modern chemistry. From the early days of supramolecular chemistry the field has been associated with possible applications. This is not surprising as the design of new molecules, and later of assemblies of molecules, is often function-driven. Now, after three decades of supramolecular chemistry, David Reinhoudt has brought together a collection of reviews to reflect on the applications that have actually been achieved. The first applications in molecular recognition are now established technologies in analytical chemistry, separation science and medicine. More recently, developments have taken place in material design and these concepts are also discussed here. Contents * Self-Assembling Systems on Scales from Nanometers to Millimeters: Design and Discovery * Dendritic Architectures * Supramolecular Structures with Macromolecules * Chemosensors: Synthetic Receptors in Analytical Sensing Applications * Selective Ion Recognition with Durable Sensors * Ion Separations in Membrane and Solid Phase Extraction Systems * Porphyrin- and Expanded Pophyrin-Based Diagnostic and Therapeutic Agents Supramolecular Materials and Technologies illustrates the achievements and advances that supramolecular chemistry has made in many fields from organic chemistry to materials science and from analytical chemistry to molecular biology.

Flame Retardant Polymer Nanocomposites

Charles Wilkie A.

Flame Retardant Polymer Nanocomposites takes a comprehensive look at polymer nanocomposites for flame retardancy applications and includes nanocomposite fundamentals (theory, design, synthesis, characterization) as well as polymer flammability fundamentals with emphasis on how nanocomposites affect flammability. The book has practical examples from literature, patents, and existing commercial products. Readers can design new work based upon the material in the book or use it as a handy reference for interpreting existing work and results.

Physics of Photonic Devices

Shun Chuang Lien

The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as: surface plasmonics and micro-ring resonators; the theory of optical gain and absorption in quantum dots and quantum wires and their applications in semiconductor lasers; and novel microcavity and photonic crystal lasers, quantum-cascade lasers, and GaN blue-green lasers within the context of advanced semiconductor lasers. Physics of Photonic Devices, Second Edition presents novel information that is not yet available in book form elsewhere. Many problem sets have been updated, the answers to which are available in an all-new Solutions Manual for instructors. Comprehensive, timely, and practical, Physics of Photonic Devices is an invaluable textbook for advanced undergraduate and graduate courses in photonics and an indispensable tool for researchers working in this rapidly growing field.

LED for Lighting Applications

Patrick Mottier

Light Emitting Diodes (LEDs) are no longer confined to use in commercial signage and have now moved firmly, and with unquestioned advantages, into the field of commercial and domestic lighting. This development was prompted in the late 1980s by the invention of the blue LED, a wavelength that had previously been missing from the available LED spectrum and which opened the way to providing white light. Since that point, LED performance (including energy efficiency) has improved dramatically, and now compares with the performance of fluorescent lights – and there remain further performance improvements yet to be delivered. The book begins with the principles of LED lighting, then focuses on issues and challenges. Chapters are devoted to key steps in LED manufacturing: substrate, epitaxy, process and packaging. Photoelectric characterization of LEDs, Lighting with LEDs and the imposition of a certain level of color quality, are the subject of later chapters, and finally there is a detailed discussion of the emergence of OLEDs, or organic LEDs, which have specific capabilities of immediate interest and importance in this field.

Values-Based Safety Process

Terry McSween E.

Behavior-Based Safety, based on the work of B.F. Skinner, includes identifying critical behaviors, observing actual behaviors and providing feedback that lead to changed and improve behavior. The Values-Based Safety Process: Improving Your Safety Culture with a Behavioral Approach, Second Edition provides a concise and practical guide for implementing a behavior-based safety system within any organization. Includes two new chapters on hot topics in behavioral safety, isolated workers, and the role of leadership in supporting behavorial safety. Updated examples of the observation checklist. New case studies covering large plants of 1,200 workers or more.

Layer of Protection Analysis

CCPS (Center for Chemical Process Safety)

Layer of protection analysis (LOPA) is a recently developed, simplified method of risk assessment that provides the much-needed middle ground between a qualitative process hazard analysis and a traditional, expensive quantitative risk analysis. Beginning with an identified accident scenario, LOPA uses simplifying rules to evaluate initiating event frequency, independent layers of protection, and consequences to provide an order-of-magnitude estimate of risk. LOPA has also proven an excellent approach for determining the safety integrity level necessary for an instrumented safety system, an approach endorsed in instrument standards, such as ISA S84 and IEC 61511. Written by industry experts in LOPA, this pioneering book provides all the necessary information to undertake and complete a Layer of Protection Analysis during any stage in a processes' life cycle. Loaded with tables, charts, and examples, this book is invaluable to technical experts involved with ensuring the safety of a process. Because of its simplified, quicker risk assessment approach, LOPA is destined to become a widely used technique. Join other major companies and start your LOPA efforts now by purchasing this book.