This completely revised edition of a bestselling concise introduction to microsystems technology includes the latest trends in this emerging scientific discipline. The chapters on silicium and LIGA technology are greatly expanded, whilst new topics include application aspects in medicine and health technology, lithography and electroplating.
Silicon is the most important material for the electronics industry. In modern microelectronics silicon devices like diodes and transistors play a major role, and devices like photodetectors or solar cells gain ever more importance. This concise handbook deals with one of the most important topics for the electronics industry. World renowned authors have contributed to this unique overview of the processing of silicon and silicon devices.
Im vorliegenden Buch werden industriell eingesetzte Beschichtungsverfahren aus den Bereichen des Auftragschwei?ens und -lotens, des Plasma-, Lichtbogen- und Flammspritzens, der Sol-Gel-Technik sowie der Dunnschicht-technologien, Chemical-Vapor-Deposition und Physical-Vapor-Deposition, vorgestellt. Besondere Bedeutung wird dabei der Verbindung von Prozess- und Werkstofftechnologie im Hinblick auf das Herstellen anforderungsgerechter Schichten beigemessen. Weiterhin werden neu entwickelte, an der Schwelle zur industriellen Einfuhrung stehende Beschichtungsverfahren aufgezeigt. Das Buch versetzt Ingenieure und Techniker in die Lage, das Potenzial von Oberflachenschutzschichten und den zugehorigen Beschichtungsverfahren fur ihren Arbeitsbereich abschatzen zu konnen, so dass die Beschich- tungstechnologie integraler Bestandteil in der Entwicklung, Konstruktion und Fertigung wird.
During the last decade, continuous casting has gained increasing importance as a highly developed technology for the production of superior quality pre-forms for specific subsequent processing by both the copper and the light metals industry. Current progress also includes spray forming as an increasingly important processing option. Therefore, experts from the manufacturing industry, researchers and scientists from university and industry as well as suppliers of equipment and ancillary products need to stay up-to-date on most recent technical, economical and ecological developments. These Proceedings of the Continuous Casting 2005 conference will review the complete range of the processing chain covering both melt treatment and casting technology as well as specific measures for micro-structural control. A focal point of the programme will deal with modelling and simulation that has become an integral part of modern manufacturing. But also safety and health aspects will be approached.
Shot peening has been proved to be a powerful instrument in enhancing the resistance of materials to various kinds of stress-induced damage, particularly against damage due to cyclic loading (fatigue) in air or in aggressive environments. As shot peening can be used for a wide variety of structural components irrespective of shape and dimensions, the number of shot peening applications in many industrial branches is increasing. The use of peen forming as a technique to form large metal parts into complicated shapes is also increasing, particularly in the aerospace industry. The Conference covers all aspects of the Science, Technology and Application of Shot Peening, and was intended to attract users, manufacturers as well as scientists working in the field of «Materials Treatment by Shot Peening». Emphasis was put on the current state of knowledge and research. This book offers scientists and engineers an unique opportunity to update their knowledge on shot peening.
Materials scientists, polymer chemists, surface physicists and materials engineers will find this book a complete and detailed treatise on the field of polymer brushes, their synthesis, characterization and manifold applications. In a first section, the various synthetic pathways and different surface materials are introduced and explained, followed by a second section covering important aspects of characterization and analysis in both flat surfaces and particles. These specific surface initiated polymerization (SIP) systems such as linear polymers, homopolymers, block copolymers, and hyperbranched polymers are unique compared to previously reported systems by chemisorption or physisorption. They have found their way in both large-scale and miniature applications of polymer brushes, which is covered in the last section. Such 'hairy' surfaces offer fascinating opportunities for addressing numerous problems of both academic and, in particular, industrial interest: high-quality, functional or protective coatings, composite materials, surface engineered particles, metal-organic interfaces, biological applications, micro-patterning, colloids, nanoparticles, functional devices, and many more. It is the desire of the authors that this book will be of benefit to readers who want to «brush-up on polymers».
The formation of solids is governed by kinetic processes, which are closely related to the macroscopic behaviour of the resulting materials. With the main focus on ease of understanding, the author begins with the basic processes at the atomic level to illustrate their connections to material properties. Diffusion processes during crystal growth and phase transformations are examined in detail. Since the underlying mathematics are very complex, approximation methods typically used in practice are the prime choice of approach. Apart from metals and alloys, the book places special emphasis on the growth of thin films and bulk crystals, which are the two main pillars of modern device and semiconductor technology. All the presented phenomena are tied back to the basic thermodynamic properties of the materials and to the underlying physical processes for clarity.
An all-in-one guide to the theory and applications of plasticity in metal forming, featuring examples from the automobile and aerospace industries Provides a solid grounding in plasticity fundamentals and material properties Features models, theorems and analysis of processes and relationships related to plasticity, supported by extensive experimental data Offers a detailed discussion of recent advances and applications in metal forming
This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.
The challenge for producing “invisible” electronic circuitry and opto-electronic devices is that the transistor materials must be transparent to visible light yet have good carrier mobilities. This requires a special class of materials having “contra-indicated properties” because from the band structure point of view, the combination of transparency and conductivity is contradictory. Structured to strike a balance between introductory and advanced topics, this monograph juxtaposes fundamental science and technology / application issues, and essential materials characteristics versus device architecture and practical applications. The first section is devoted to fundamental materials compositions and their properties, including transparent conducting oxides, transparent oxide semiconductors, p-type wide-band-gap semiconductors, and single-wall carbon nanotubes. The second section deals with transparent electronic devices including thin-film transistors, photovoltaic cells, integrated electronic circuits, displays, sensors, solar cells, and electro-optic devices. Describing scientific fundamentals and recent breakthroughs such as the first “invisible” transistor, Transparent Electronics: From Synthesis to Applications brings together world renowned experts from both academia, national laboratories, and industry.