The increasing integration between gene manipulation and genomics is embraced in this new book, Principles of Gene Manipulation and Genomics, which brings together for the first time the subjects covered by the best-selling books Principles of Gene Manipulation and Principles of Genome Analysis & Genomics. Comprehensively revised, updated and rewritten to encompass within one volume, basic and advanced gene manipulation techniques, genome analysis, genomics, transcriptomics, proteomics and metabolomics Includes two new chapters on the applications of genomics An accompanying website – www.blackwellpublishing.com/primrose – provides instructional materials for both student and lecturer use, including multiple choice questions, related websites, and all the artwork in a downloadable format. An essential reference for upper level undergraduate and graduate students of genetics, genomics, molecular biology and recombinant DNA technology.
Dr. Jacqueline N. Crawley, author of the First and Second Editions of What’s Wrong with My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice,continues to field calls and e-mails from molecular geneticists who ask: how do I run behavioral assays to find out what’s wrong with my mouse? Turn to What’s Wrong with My Mouse? to discover the wealth of mouse behavioral tasks and to get the guidance you need to select the best methods and necessary controls. Chapters are organized by behavioral domain, including measurements of general health, motor functions, sensory abilities, learning and memory, feeding and drinking, reproductive, social, emotional, and reward behaviors in mutant mice. Throughout the chapters, new behavioral tasks and new research discoveries have been added, bringing the Second Edition up to date with the latest science. In addition, the Second Edition includes two new chapters: «Neurodevelopment and Neurodegeneration» discusses mouse behavioral tasks relevant to neurodevelopmental diseases, such as mental retardation and autism, and to neurodegenerative diseases, such as Alzheimers, Parkinsons, Huntingtons, and amyotrophic lateral sclerosis. «Putting It All Together» recommends strategies for optimizing a battery of behavioral phenotyping tests to address your specific hypotheses about gene functions. The final chapter, «The Next Generation,» examines new and emerging technologies. Throughout the book, the use of behavioral testing equipment is illustrated with photographs, diagrams, and representative data. Examples of behavioral tasks successfully applied to transgenic and knockout mouse models are provided, as well as references to the primary literature and step-by-step methods protocols. These features, along with a comprehensive index, listings of database and vendor websites, and an extensive list of references, make this book a valuable and practical resource for students and researchers.
The new edition of this classic student text provides an up-to-date and comprehensive view of the major environmental issues facing the world today, and is an essential introduction to the past, present and future impact of humans on Earth. Explores the impact of humans upon vegetation, animals, soils, water, landforms, and the atmosphere. Updated extensively, with many new figures and up-to-date statistics. Four completely new chapters explore the ways in which global climate change may have an impact on Earth in the future. A new design makes the text even more accessible and easy to use. Visit www.blackwellpublishing.com/humanimpact to access the artwork from the book.
The material in this book attempts to address mathematical calculations common to both the environmental science and engineering professionals. The book provides the reader with nearly 100 solved illustrative examples. The interrelationship between both theory and applications is emphasized in nearly all of the 35 chapters. One key feature of this book is that the solutions to the problems are presented in a stand-alone manner. Throughout the book, the illustrative examples are laid out in such a way as to develop the reader’s technical understanding of the subject in question, with more difficult examples located at or near the end of each set. In presenting the text material, the authors have stressed the pragmatic approach in the application of mathematical tools to assist the reader in grasping the role of mathematical skills in environmental problem-solving situations. The book is divided up into five (V) parts: Introduction Analytical Analysis Numerical Analysis Statistical Analysis Optimization
This accessible, new reference work shows how and why RF energy is created within a printed circuit board and the manner in which propagation occurs. With lucid explanations, this book enables engineers to grasp both the fundamentals of EMC theory and signal integrity and the mitigation process needed to prevent an EMC event. Author Montrose also shows the relationship between time and frequency domains to help you meet mandatory compliance requirements placed on printed circuit boards. Using real-world examples the book features: Clear discussions, without complex mathematical analysis, of flux minimization concepts Extensive analysis of capacitor usage for various applications Detailed examination of components characteristics with various grounding methodologies, including implementation techniques An in-depth study of transmission line theory A careful look at signal integrity, crosstalk, and termination
The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.
The first book on the subject. Written by an acknowledged expert in the field. The techniques discussed have important applications to wireless engineering. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
This text combines the fundamentals of electromagnetics with numerical modeling to tackle a broad range of current electromagnetic compatibility (EMC) problems, including problems with lightning, transmission lines, and grounding systems. It sets forth a solid foundation in the basics before advancing to specialized topics, and allows readers to develop their own EMC computational models for applications in both research and industry.
The Method of Lines (MOL) is a versatile approach to obtaining numerical solutions to partial differential equations (PDEs) as they appear in dynamic and static problems. This method, popular in science and engineering, essentially reduces PDEs to a set of ordinary differential equations that can be integrated using standard numerical integration methods. Its significant advantage is that the analysis algorithms follow the physical wave propagation and are therefore efficient. This is because the fields on the discretisation lines are described by generalised transmission line (GTL) equations. With this formulation we have a connection to the well known transmission line theory and resulting in an easy understanding. The method of lines is a very accurate and powerful way to analyze electromagnetic waves, enabling a full-wave solution without the computational burden of pure finite element or finite difference methods. With Analysis of Electromagnetic Fields and Waves, Reinhold Pregla describes an important and powerful method for analyzing electromagnetic waves. This book: Describes the general analysis principles for electromagnetic fields. Includes applications in microwave, millimetre wave and optical frequency regions. Unifies the analysis by introducing generalised transmission line (GTL) equations for all orthogonal coordinate systems and with materials of arbitrary anisotropy as a common start point. Demonstrates a unique analysis principle with the numerical stable impedance/admittance transformation and a physical adapted field transformation concept that is also useful for other modelling algorithms. Includes chapters on Eigenmode calculations for various waveguides, concatenations and junctions of arbitrary number of different waveguide sections in complex devices, periodic structures (e.g. Bragg gratings, meander lines, clystron resonators, photonic crystals), antennas (e.g. circular and conformal). Enables the reader to solve partial differential equations in other physical areas by using the described principles. Features an accompanying website with program codes in Matlab© for special problems. Analysis of Electromagnetic Fields and Waves will appeal to electromagnetic field practitioners in primary and applied research as well as postgraduate students in the areas of photonics, micro- and millimetre waves, general electromagnetics, e.g. microwave integrated circuits, antennas, integrated and fibre optics, optoelectronics, nanophotonics, microstructures, artificial materials.
This book focuses on a fundamental feature of vacuum electronics: the strong interaction of the physics of electron beams and vacuum microwave electronics, including millimeter-wave electronics. The author guides readers from the roots of classical vacuum electronics to the most recent achievements in the field. Special attention is devoted to the physics and theory of relativistic beams and microwave devices, as well as the theory and applications of specific devices.