Louis Theodore

Список книг автора Louis Theodore



    Environmental Regulatory Calculations Handbook

    Louis Theodore

    Regulatory Calculations Handbook addresses the environmental concerns of individuals by presenting the basic fundamentals of many environmental regulatory topics. Featuring an overview of the history of environmental problems, the current regulatory framework, and problems/solutions of practical problems in the field, this handbook comprehensively brings the potential calculations and information on regulations into one single-source reference. Provides 500 solved problems, which detail how to calculate the amount of pollutant that a facility is letting go into the environment Includes problems and solutions that can stand alone, offering material that develops the reader's understanding of regulatory matters Combines information that is otherwise spread-out and difficult to consolidate quickly

    Thermodynamics for the Practicing Engineer

    Louis Theodore

    Enables you to easily advance from thermodynamics principles to applications Thermodynamics for the Practicing Engineer, as the title suggests, is written for all practicing engineers and anyone studying to become one. Its focus therefore is on applications of thermodynamics, addressing both technical and pragmatic problems in the field. Readers are provided a solid base in thermodynamics theory; however, the text is mostly dedicated to demonstrating how theory is applied to solve real-world problems. This text's four parts enable readers to easily gain a foundation in basic principles and then learn how to apply them in practice: Part One: Introduction. Sets forth the basic principles of thermodynamics, reviewing such topics as units and dimensions, conservation laws, gas laws, and the second law of thermodynamics. Part Two: Enthalpy Effects. Examines sensible, latent, chemical reaction, and mixing enthalpy effects. Part Three: Equilibrium Thermodynamics. Addresses both principles and calculations for phase, vapor-liquid, and chemical reaction equilibrium. Part Four: Other Topics. Reviews such important issues as economics, numerical methods, open-ended problems, environmental concerns, health and safety management, ethics, and exergy. Throughout the text, detailed illustrative examples demonstrate how all the principles, procedures, and equations are put into practice. Additional practice problems enable readers to solve real-world problems similar to the ones that they will encounter on the job. Readers will gain a solid working knowledge of thermodynamics principles and applications upon successful completion of this text. Moreover, they will be better prepared when approaching/addressing advanced material and more complex problems.

    Introduction to Mathematical Methods for Environmental Engineers and Scientists

    Louis Theodore

    The material in this book attempts to address mathematical calculations common to both the environmental science and engineering professionals. The book provides the reader with nearly 100 solved illustrative examples. The interrelationship between both theory and applications is emphasized in nearly all of the 35 chapters. One key feature of this book is that the solutions to the problems are presented in a stand-alone manner. Throughout the book, the illustrative examples are laid out in such a way as to develop the reader’s technical understanding of the subject in question, with more difficult examples located at or near the end of each set. In presenting the text material, the authors have stressed the pragmatic approach in the application of mathematical tools to assist the reader in grasping the role of mathematical skills in environmental problem-solving situations. The book is divided up into five (V) parts: Introduction Analytical Analysis Numerical Analysis Statistical Analysis Optimization

    Nanotechnology

    Louis Theodore

    An authoritative, in-depth exploration of the environmental consequences of nanotechnology Nanotechnology is revolutionizing the chemical, telecom, biotech, pharmaceutical, health care, aerospace, and computer industries, among others, and many exciting new nanotech applications are envisioned for the near future. While the rapid pace of innovation has been truly inspiring, much remains to be learned about the potential environmental and health risks posed by this nascent technology and its byproducts. So important is this issue that the ultimate success or failure of nanotechnology may well depend on how effectively science and industry address these concerns in the years ahead. Written by two highly accomplished environmental professionals, Nanotechnology: Environmental Implications and Solutions brings scientists, engineers, and policymakers up to speed on the current state of knowledge in this vitally important area. Professor Theodore and Dr. Kunz provide a concise review of nano-fundamentals and explore background issues surrounding nanotechnology and its environmental impact. They then follow up with in-depth discussions of: * The control, monitoring, and reduction of nanotech byproducts and their impact on the air, water, and land * Health risks associated with nanotechnology, and methods to assess and control them * Nanotech hazard risk assessment-including emergency response planning and personnel training * Multimedia approaches that are available for the analysis of the impact of nanotechnology in the chemical, manufacturing, and waste disposal industries * The future of nanotechnology and the «Industrial Revolution II» * The legal implications of nanotechnology * Societal and ethical implications of nanotechnology-based materials and processing method Assuming only a basic knowledge of physics, chemistry, and mathematics on behalf of its readers, Nanotechnology: Environmental Implications and Solutions makes fascinating and useful reading for engineers, scientists, administrators, environmental regulatory officials, and public policy makers, as well as students in a range of science and engineering disciplines.

    Unit Operations in Environmental Engineering

    Louis Theodore

    The authors have written a practical introductory text exploring the theory and applications of unit operations for environmental engineers that is a comprehensive update to Linvil Rich’s 1961 classic work, “Unit Operations in Sanitary Engineering”. The book is designed to serve as a training tool for those individuals pursuing degrees that include courses on unit operations. Although the literature is inundated with publications in this area emphasizing theory and theoretical derivations, the goal of this book is to present the subject from a strictly pragmatic introductory point-of-view, particularly for those individuals involved with environmental engineering. This book is concerned with unit operations, fluid flow, heat transfer, and mass transfer. Unit operations, by definition, are physical processes although there are some that include chemical and biological reactions. The unit operations approach allows both the practicing engineer and student to compartmentalize the various operations that constitute a process, and emphasizes introductory engineering principles so that the reader can then satisfactorily predict the performance of the various unit operation equipment.

    Open-Ended Problems. A Future Chemical Engineering Education Approach

    Louis Theodore

    This is a unique book with nearly 1000 problems and 50 case studies on open-ended problems in every key topic in chemical engineering that helps to better prepare chemical engineers for the future. The term «open-ended problem» basically describes an approach to the solution of a problem and/or situation for which there is not a unique solution. The Introduction to the general subject of open-ended problems is followed by 22 chapters, each of which addresses a traditional chemical engineering or chemical engineering-related topic. Each of these chapters contain a brief overview of the subject matter of concern, e.g., thermodynamics, which is followed by sample open-ended problems that have been solved (by the authors) employing one of the many possible approaches to the solutions. This is then followed by approximately 40-45 open-ended problems with no solutions (although many of the authors’ solutions are available for those who adopt the book for classroom or training purposes). A reference section is included with the chapter’s contents. Term projects, comprised of 12 additional chapter topics, complement the presentation. This book provides academic, industrial, and research personnel with the material that covers the principles and applications of open-ended chemical engineering problems in a thorough and clear manner. Upon completion of the text, the reader should have acquired not only a working knowledge of the principles of chemical engineering, but also (and more importantly) experience in solving open-ended problems. What many educators have learned is that the applications and implications of open-ended problems are not only changing professions, but also are moving so fast that many have not yet grasped their tremendous impact. The book drives home that the open-ended approach will revolutionize the way chemical engineers will need to operate in the future.

    Chemical Reactor Analysis and Applications for the Practicing Engineer

    Louis Theodore

    This books format follows an applications-oriented text and serves as a training tool for individuals in education and industry involved directly, or indirectly, with chemical reactors. It addresses both technical and calculational problems in this field. While this text can be complimented with texts on chemical kinetics and/or reactor design, it also stands alone as a self-teaching aid. The first part serves as an introduction to the subject title and contains chapters dealing with history, process variables, basic operations, kinetic principles, and conversion variables. The second part of the book addresses traditional reactor analysis; chapter topics include batch, CSTRs, tubular flow reactors, plus a comparison of these classes of reactors. Part 3 keys on reactor applications that include non-ideal reactors: thermal effects, interpretation of kinetic data, and reactor design. The book concludes with other reactor topics; chapter titles include catalysis, catalytic reactors, other reactions and reactors, and ABET-related topics. An extensive Appendix is also included

    Heat Transfer Applications for the Practicing Engineer

    Louis Theodore

    This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, including those in heat transfer. The second Part of the book is concerned with heat transfer principles. Topics that receive treatment include Steady-state Heat Conduction, Unsteady-state Heat Conduction, Forced Convection, Free Convection, Radiation, Boiling and Condensation, and Cryogenics. Part three (considered the heart of the book) addresses heat transfer equipment design procedures and applications. In addition to providing a detailed treatment of the various types of heat exchangers, this part also examines the impact of entropy calculations on exchanger design, and operation, maintenance and inspection (OM&I), plus refractory and insulation effects. The concluding Part of the text examines ABET (Accreditation Board for Engineering and Technology) related topics of concern, including economies and finance, numerical methods, open-ended problems, ethics, environmental management, and safety and accident management.