This topical volume in the respected Encyclopedia series is the first in many years to bring together all important aspects of developmental biology in one source, from morphogenesis and organogenesis, via epigenetic regulation of gene expression to evolutionary developmental biology. The editor-in-chief has assembled an outstanding team of contributors to review these topics, creating an authoritative work for many years to come. The result is a unique, top-level reference in developmental biology for researchers, students and professionals alike.
The only textbook that applies thermodynamics to real-world process engineering problems This must-read for advanced students and professionals alike is the first book to demonstrate how chemical thermodynamics work in the real world by applying them to actual engineering examples. It also discusses the advantages and disadvantages of the particular models and procedures, and explains the most important models that are applied in process industry. All the topics are illustrated with examples that are closely related to practical process simulation problems. At the end of each chapter, additional calculation examples are given to enable readers to extend their comprehension. Chemical Thermodynamics for Process Simulation instructs on the behavior of fluids for pure fluids, describing the main types of equations of state and their abilities. It discusses the various quantities of interest in process simulation, their correlation, and prediction in detail. Chapters look at the important terms for the description of the thermodynamics of mixtures; the most important models and routes for phase equilibrium calculation; models which are applicable to a wide variety of non-electrolyte systems; membrane processes; polymer thermodynamics; enthalpy of reaction; chemical equilibria, and more. -Explains thermodynamic fundamentals used in process simulation with solved examples -Includes new chapters about modern measurement techniques, retrograde condensation, and simultaneous description of chemical equilibrium -Comprises numerous solved examples, which simplify the understanding of the often complex calculation procedures, and discusses advantages and disadvantages of models and procedures -Includes estimation methods for thermophysical properties and phase equilibria thermodynamics of alternative separation processes -Supplemented with MathCAD-sheets and DDBST programs for readers to reproduce the examples Chemical Thermodynamics for Process Simulation is an ideal resource for those working in the fields of process development, process synthesis, or process optimization, and an excellent book for students in the engineering sciences.
The International System of Units, the SI, provides the foundation for all measurements in science, engineering, economics, and society. The SI has been fundamentally revised in 2019. The new SI is a universal and highly stable unit system based on invariable constants of nature. Its implementation rests on quantum metrology and quantum standards, which base measurements on the manipulation and counting of single quantum objects, such as electrons, photons, ions, and flux quanta. This book explains and illustrates the new SI, its impact on measurements, and the quantum metrology and quantum technology behind it. The book is based on the book ?Quantum Metrology: Foundation of Units and Measurements? by the same authors. From the contents: -Measurement -The SI (Système International d?Unités) -Realization of the SI Second: Thermal Beam Cs Clock, Laser Cooling, and the Cs Fountain Clock -Flux Quanta, Josephson Effect, and the SI Volt -Quantum Hall Effect, the SI Ohm, and the SI Farad -Single-Charge Transfer Devices and the SI Ampere -The SI Kilogram, the Mole, and the Planck constant -The SI Kelvin and the Boltzmann Constant -Beyond the present SI: Optical Clocks and Quantum Radiometry -Outlook
This comprehensive textbook on the rapidly advancing field introduces readers to the fundamental concepts of information theory and quantum entanglement, taking into account the current state of research and development. It thus covers all current concepts in quantum computing, both theoretical and experimental, before moving on to the latest implementations of quantum computing and communication protocols. It contains problems and exercises and is therefore ideally suited for students and lecturers in physics and informatics, as well as experimental and theoretical physicists in academia and industry who work in the field of quantum information processing. The second edition incorporates important recent developments such as quantum metrology, quantum correlations beyond entanglement, and advances in quantum computing with solid state devices.
Das Halliday-Lehrbuch Physik für natur- und ingenieurwissenschaftliche Studiengänge bietet einen Überblick über den Stoff typischer Experimentalphysik-Vorlesungen. Dementsprechend wurde der Stoff auf die Bedürfnisse dieser Studierenden zugeschnitten und gestrafft. Außerdem stellt jedes Kapitel einen ausgeprägten Praxisbezug her, um die Anwendung physikalischer Konzepte zu illustrieren. Für die dritte Auflage wurden die Kapitel nicht nur überarbeitet, sondern didaktisch neu strukturiert: die Lerninhalte sind nun in Modulen organisiert, wobei jede Einheit die Lernziele explizit aufführt und die Schlüsselkonzepte zusammenfasst. So können Studentinnen und Studenten zielgerichtet lernen und den Lernerfolg nach der Lektüre selbst überprüfen. Das Übungsbuch hilft bei der Durchdringung des Stoffs der einführenden Experimentalphysik-Vorlesungen für Nebenfachstudierende. Es enthält mehr als 750 Aufgaben mit ausführlichenb Lösungen aus allen Kapiteln des Lehrbuchs. Dabei stammen die Aufgaben aus allen Themenbereichen der Experimentalphysik und reichen von Standardaufgaben, die jeder können muss, bis hin zu weiterführenden Aufgaben für Fortgeschrittene.
Das Übungsbuch zur dritten Auflage des Halliday-Lehrbuchs für natur- und ingenieurwissenschaftliche Studiengänge hilft bei der Durchdringung des Stoffs der einführenden Experimentalphysik-Vorlesungen für Ingenieure und Naturwissenschaftler. Es enthält die Lösungen inklusive des ausführlichen Lösungswegs zu mehr als 750 Aufgaben unterschiedlichen Schwierigkeitsgrades aus allen Kapiteln des Lehrbuchs. Sowohl einzeln erhältlich als auch im Deluxe-Set mit dem Lehrbuch!
Provides fully updated coverage of new experiments in quantum optics This fully revised and expanded edition of a well-established textbook on experiments on quantum optics covers new concepts, results, procedures, and developments in state-of-the-art experiments. It starts with the basic building blocks and ideas of quantum optics, then moves on to detailed procedures and new techniques for each experiment. Focusing on metrology, communications, and quantum logic, this new edition also places more emphasis on single photon technology and hybrid detection. In addition, it offers end-of-chapter summaries and full problem sets throughout. Beginning with an introduction to the subject, A Guide to Experiments in Quantum Optics, 3rd Edition presents readers with chapters on classical models of light, photons, quantum models of light, as well as basic optical components. It goes on to give readers full coverage of lasers and amplifiers, and examines numerous photodetection techniques being used today. Other chapters examine quantum noise, squeezing experiments, the application of squeezed light, and fundamental tests of quantum mechanics. The book finishes with a section on quantum information before summarizing of the contents and offering an outlook on the future of the field. -Provides all new updates to the field of quantum optics, covering the building blocks, models and concepts, latest results, detailed procedures, and modern experiments -Places emphasis on three major goals: metrology, communications, and quantum logic -Presents fundamental tests of quantum mechanics (Schrodinger Kitten, multimode entanglement, photon systems as quantum emulators), and introduces the density function -Includes new trends and technologies in quantum optics and photodetection, new results in sensing and metrology, and more coverage of quantum gates and logic, cluster states, waveguides for multimodes, discord and other quantum measures, and quantum control -Offers end of chapter summaries and problem sets as new features A Guide to Experiments in Quantum Optics, 3rd Edition is an ideal book for professionals, and graduate and upper level students in physics and engineering science.
The scientific expedition of H. M. S. Challenger in the 1870s marks the starting point of physical oceanography. This ship traveled the seas of the globe pursuing a dual objective: to conduct an in-depth study of animal life and to observe the physical properties of ocean waters. Volume 3 focuses on measurements and modeling of liquid compressibility. Based on the work initiated by the physicist Peter Tait, a detailed presentation of liquid equations-of-state is proposed. The physical interpretation of the parameters of these equations is discussed, leading to a description of the «structure» of liquid media. From Deep Sea to Laboratory is available in three volumes for curious readers drawn to travel, history and science. Students, researchers and teachers of physics, fluid mechanics and oceanography will find material to deepen their knowledge.
A unique guide on how to model and make the best vacuum chambers Vacuum in Particle Accelerators offers a comprehensive overview of ultra-high vacuum systems that are used in charge particle accelerators. The book?s contributors ? noted experts in the field ? also highlight the design and modeling of vacuum particle accelerators. The book reviews vacuum requirements, identifies sources of gas in vacuum chambers and explores methods of removing them. In addition, Vacuum in Particle Accelerators offers an in-depth explanation of the control of the beam and the beam aperture. In the final part of the book, the focus is on the modelling approaches for vacuum chambers under various operating conditions. This important guide: -Offers a review of vacuum systems in charge particle accelerators -Contains contributions from an international panel of noted experts in the field -Highlights the systems, modelling, and design of vacuum particle accelerators -Includes information on vacuum requirements, beam-gas interactions, cryogenic temperatures, ion induced pressure instability, heavy ion machines -Presents the most up-to-date information on the topic for scientists and engineers Written for vacuum physicists, vacuum engineers, plasma physicists, materials scientists, and engineering scientists, Vacuum Particle Accelerators is an essential reference offering an in-depth exploration of vacuum systems and the modelling and design of charged particle accelerators.
The Vlasov equation is the master equation which provides a statistical description for the collective behavior of large numbers of charged particles in mutual, long-range interaction. In other words, a low collision (or “Vlasov”) plasma. Plasma physics is itself a relatively young discipline, whose “birth” can be ascribed to the 1920s. The origin of the Vlasov model, however, is even more recent, dating back to the late 1940s. This “young age” is due to the rare occurrence of Vlasov plasma on Earth, despite the fact it characterizes most of the visible matter in the universe. This book – addressed to students, young researchers and to whoever wants a good understanding of Vlasov plasmas – discusses this model with a pedagogical presentation, focusing on the general properties and historical development of the applications of the Vlasov equation. The milestone developments discussed in the first two chapters serve as an introduction to more recent works (characterization of wave propagation and nonlinear properties of the electrostatic limit).