Программирование

Различные книги в жанре Программирование

Evolutionary Algorithms for Food Science and Technology

Evelyne Lutton

Researchers and practitioners in food science and technology routinely face several challenges, related to sparseness and heterogeneity of data, as well as to the uncertainty in the measurements and the introduction of expert knowledge in the models. Evolutionary algorithms (EAs), stochastic optimization techniques loosely inspired by natural selection, can be effectively used to tackle these issues. In this book, we present a selection of case studies where EAs are adopted in real-world food applications, ranging from model learning to sensitivity analysis.

MMSE-Based Algorithm for Joint Signal Detection, Channel and Noise Variance Estimation for OFDM Systems

Vincent Savaux

This book presents an algorithm for the detection of an orthogonal frequency division multiplexing (OFDM) signal in a cognitive radio context by means of a joint and iterative channel and noise estimation technique. Based on the minimum mean square criterion, it performs an accurate detection of a user in a frequency band, by achieving a quasi-optimal channel and noise variance estimation if the signal is present, and by estimating the noise level in the band if the signal is absent. Organized into three chapters, the first chapter provides the background against which the system model is presented, as well as some basics concerning the channel statistics and the transmission of an OFDM signal over a multipath channel. In Chapter 2, the proposed iterative algorithm for the noise variance and the channel estimation is detailed, and in Chapter 3, an application of the algorithm for the free-band detection is proposed. In both Chapters 2 and 3, the principle of the algorithm is presented in a simple way, and more elaborate developments are also provided. The different assumptions and assertions in the developments and the performance of the proposed method are validated through simulations, and compared to methods of the scientific literature

Practical Guide to Machine Vision Software. An Introduction with LabVIEW

Kye-Si Kwon

For both students and engineers in R&D, this book explains machine vision in a concise, hands-on way, using the Vision Development Module of the LabView software by National Instruments. Following a short introduction to the basics of machine vision and the technical procedures of image acquisition, the book goes on to guide readers in the use of the various software functions of LabView's machine vision module. It covers typical machine vision tasks, including particle analysis, edge detection, pattern and shape matching, dimension measurements as well as optical character recognition, enabling readers to quickly and efficiently use these functions for their own machine vision applications. A discussion of the concepts involved in programming the Vision Development Module rounds off the book, while example problems and exercises are included for training purposes as well as to further explain the concept of machine vision. With its step-by-step guide and clear structure, this is an essential reference for beginners and experienced researchers alike.

Metaheuristics for String Problems in Bio-informatics

Christian Blum

So-called string problems are abundant in bioinformatics and computational biology. New optimization problems dealing with DNA or protein sequences are constantly arising and researchers are highly in need of efficient optimization techniques for solving them. One obstacle for optimization practitioners is the atypical nature of these problems which require an interdisciplinary approach in order to solve them efficiently and accurately.

Evolutionary Computation in Gene Regulatory Network Research

Hitoshi Iba

Introducing a handbook for gene regulatory network research using evolutionary computation, with applications for computer scientists, computational and system biologists This book is a step-by-step guideline for research in gene regulatory networks (GRN) using evolutionary computation (EC). The book is organized into four parts that deliver materials in a way equally attractive for a reader with training in computation or biology. Each of these sections, authored by well-known researchers and experienced practitioners, provides the relevant materials for the interested readers. The first part of this book contains an introductory background to the field. The second part presents the EC approaches for analysis and reconstruction of GRN from gene expression data. The third part of this book covers the contemporary advancements in the automatic construction of gene regulatory and reaction networks and gives direction and guidelines for future research. Finally, the last part of this book focuses on applications of GRNs with EC in other fields, such as design, engineering and robotics. • Provides a reference for current and future research in gene regulatory networks (GRN) using evolutionary computation (EC) • Covers sub-domains of GRN research using EC, such as expression profile analysis, reverse engineering, GRN evolution, applications • Contains useful contents for courses in gene regulatory networks, systems biology, computational biology, and synthetic biology • Delivers state-of-the-art research in genetic algorithms, genetic programming, and swarm intelligence Evolutionary Computation in Gene Regulatory Network Research is a reference for researchers and professionals in computer science, systems biology, and bioinformatics, as well as upper undergraduate, graduate, and postgraduate students. Hitoshi Iba is a Professor in the Department of Information and Communication Engineering, Graduate School of Information Science and Technology, at the University of Tokyo, Toyko, Japan. He is an Associate Editor of the IEEE Transactions on Evolutionary Computation and the journal of Genetic Programming and Evolvable Machines. Nasimul Noman is a lecturer in the School of Electrical Engineering and Computer Science at the University of Newcastle, NSW, Australia. From 2002 to 2012 he was a faculty member at the University of Dhaka, Bangladesh. Noman is an Editor of the BioMed Research International journal. His research interests include computational biology, synthetic biology, and bioinformatics.

Co-Clustering. Models, Algorithms and Applications

Mohamed Nadif

Cluster or co-cluster analyses are important tools in a variety of scientific areas. The introduction of this book presents a state of the art of already well-established, as well as more recent methods of co-clustering. The authors mainly deal with the two-mode partitioning under different approaches, but pay particular attention to a probabilistic approach. Chapter 1 concerns clustering in general and the model-based clustering in particular. The authors briefly review the classical clustering methods and focus on the mixture model. They present and discuss the use of different mixtures adapted to different types of data. The algorithms used are described and related works with different classical methods are presented and commented upon. This chapter is useful in tackling the problem of co-clustering under the mixture approach. Chapter 2 is devoted to the latent block model proposed in the mixture approach context. The authors discuss this model in detail and present its interest regarding co-clustering. Various algorithms are presented in a general context. Chapter 3 focuses on binary and categorical data. It presents, in detail, the appropriated latent block mixture models. Variants of these models and algorithms are presented and illustrated using examples. Chapter 4 focuses on contingency data. Mutual information, phi-squared and model-based co-clustering are studied. Models, algorithms and connections among different approaches are described and illustrated. Chapter 5 presents the case of continuous data. In the same way, the different approaches used in the previous chapters are extended to this situation. Contents 1. Cluster Analysis. 2. Model-Based Co-Clustering. 3. Co-Clustering of Binary and Categorical Data. 4. Co-Clustering of Contingency Tables. 5. Co-Clustering of Continuous Data. About the Authors Gérard Govaert is Professor at the University of Technology of Compiègne, France. He is also a member of the CNRS Laboratory Heudiasyc (Heuristic and diagnostic of complex systems). His research interests include latent structure modeling, model selection, model-based cluster analysis, block clustering and statistical pattern recognition. He is one of the authors of the MIXMOD (MIXtureMODelling) software. Mohamed Nadif is Professor at the University of Paris-Descartes, France, where he is a member of LIPADE (Paris Descartes computer science laboratory) in the Mathematics and Computer Science department. His research interests include machine learning, data mining, model-based cluster analysis, co-clustering, factorization and data analysis. Cluster Analysis is an important tool in a variety of scientific areas. Chapter 1 briefly presents a state of the art of already well-established as well more recent methods. The hierarchical, partitioning and fuzzy approaches will be discussed amongst others. The authors review the difficulty of these classical methods in tackling the high dimensionality, sparsity and scalability. Chapter 2 discusses the interests of coclustering, presenting different approaches and defining a co-cluster. The authors focus on co-clustering as a simultaneous clustering and discuss the cases of binary, continuous and co-occurrence data. The criteria and algorithms are described and illustrated on simulated and real data. Chapter 3 considers co-clustering as a model-based co-clustering. A latent block model is defined for different kinds of data. The estimation of parameters and co-clustering is tackled under two approaches: maximum likelihood and classification maximum likelihood. Hard and soft algorithms are described and applied on simulated and real data. Chapter 4 considers co-clustering as a matrix approximation. The trifactorization approach is considered and algorithms based on update rules are described. Links with numerical and probabi

Colour Engineering. Achieving Device Independent Colour

Lindsay MacDonald

As colour imaging takes on increasing importance in a range of products and technologies, colour fidelity across different media has become essential. This book has arisen from the need for a specialist text that brings together key developments in colour management technology and findings from the colour engineering research community. Edited by highly regarded specialists in colour management systems, Colour Engineering introduces the reader systematically to the art of constistent quality of image reproduction – regardless of the monitor or graphic user interface employed. Features: a thorough review of the elements of colour science that apply to colour imaging. a comprehensive analysis of methods for characterizing devices in the colour imaging chain. a review of the key topics in colour management. the different approaches to implementing colour systems at some of the leading exponents in the imaging industry. This authoritative book depicting the latest developments in colour imaging, written by a group of authors at the forefront of research in this exciting and fast-moving field will appeal to students as well as practitioners of the new discipline of colour engineering. The Society for Information Display (SID) is an international society, which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics

Advanced Quantum Communications. An Engineering Approach

Sandor Imre

The book provides an overview of the most advanced quantum informational geometric techniques, which can help quantum communication theorists analyze quantum channels, such as security or additivity properties. Each section addresses an area of major research of quantum information theory and quantum communication networks. The authors present the fundamental theoretical results of quantum information theory, while also presenting the details of advanced quantum ccommunication protocols with clear mathematical and information theoretical background. This book bridges the gap between quantum physics, quantum information theory, and practical engineering.

Metaheuristics for Big Data

Clarisse Dhaenens

Big Data is a new field, with many technological challenges to be understood in order to use it to its full potential. These challenges arise at all stages of working with Big Data, beginning with data generation and acquisition. The storage and management phase presents two critical challenges: infrastructure, for storage and transportation, and conceptual models. Finally, to extract meaning from Big Data requires complex analysis. Here the authors propose using metaheuristics as a solution to these challenges; they are first able to deal with large size problems and secondly flexible and therefore easily adaptable to different types of data and different contexts. The use of metaheuristics to overcome some of these data mining challenges is introduced and justified in the first part of the book, alongside a specific protocol for the performance evaluation of algorithms. An introduction to metaheuristics follows. The second part of the book details a number of data mining tasks, including clustering, association rules, supervised classification and feature selection, before explaining how metaheuristics can be used to deal with them. This book is designed to be self-contained, so that readers can understand all of the concepts discussed within it, and to provide an overview of recent applications of metaheuristics to knowledge discovery problems in the context of Big Data.

Healthcare Simulation. A Guide for Operations Specialists

Laura Gantt T.

A focused guide for healthcare simulation operations in education and training With the growing use of simulation within the field of healthcare, Healthcare Simulation: A Guide for Operations Specialists provides a much needed resource for developing the roles and responsibilities of simulation operations specialists. The book illustrates the current state and evolution of the simulation professional workforce and discusses the topics necessary for the development of these pivotal roles. The book promotes the value of simulation-based education in healthcare and its associated outcomes while clarifying the operational requirements of successful simulations. Featuring numerous contributions from international experts, consultants, and specialists, Healthcare Simulation: A Guide for Operations Specialists presents advances in healthcare simulation techniques and also features: Coverage of the best practices and available technologies for healthcare simulation operations specialists within healthcare education, training, and assessment Interdisciplinary, practical examples throughout to help readers better understand the presented material An overview of the many facets of day-to-day operations within a healthcare simulation program Discussions regarding the concurrent need for understanding proper patient care that accompanies the human-to-machine interface in patient simulation Healthcare Simulation: A Guide for Operations Specialists is an excellent reference for healthcare simulation professionals including administrators, medical directors, managers, simulation technologists, faculty members, and educators in academic and healthcare settings. The book is also a useful supplementary textbook for graduate-level courses related to simulation and certificate programs in simulation education and simulation operations.