Математика

Различные книги в жанре Математика

Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления

А. Х. Шень

Книга написана по материалам лекций и семинаров, проводившихся авторами для студентов младших курсов мехмата МГУ. В ней рассказывается об основных понятиях математической логики (логика высказываний, языки первого порядка, выразимость, исчисление высказываний, разрешимые теории, теорема о полноте, начала теории моделей). Изложение рассчитано на учеников математических школ, студентов-математиков и всех интересующихся математической логикой. Книга содержит около 200 задач различной трудности.

Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств

А. Х. Шень

Книга написана по материалам лекций и семинаров, проводившихся авторами для студентов младших курсов мехмата МГУ. В ней рассказывается об основных понятиях «наивной теории множеств» (мощности, упорядоченные множества, трансфинитная индукция, ординалы). Изложение рассчитано на учеников математических школ, студентов-математиков и всех интересующихся основами теории множеств. Книга включает около 150 задач различной трудности.

Элементарная математика для школьников, студентов и преподавателей

О. А. Иванов

Книга состоит из десяти глав, названия большинства из которых вполне традиционны для книг, предназначенных для факультативных занятий по математике. В книге приведены более трехсот задач, большая часть которых предлагается читателю для самостоятельного решения. Однако в каждой из глав рассматриваются не только элементарные задачи, но и связанная с ними теория. Для старшеклассников школ с углубленным изучением математики и их учителей, студентов математических факультетов университетов и их преподавателей, а также всех, кто интересуется математикой и ее преподаванием.

Элементарная геометрия. Том 2: Стереометрия, преобразования пространства

Я. П. Понарин

Пособие предназначено для учащихся старших классов школ с математической специализацией. Оно содержит углубленное и расширенное изложение геометрии. В нем изложена теория прямых и плоскостей, трехгранных углов, тетраэдров, сфер и других тел. Рассмотрены методы доказательства геометрических неравенств и нахождения экстремумов. Много внимания уделено преобразованиям пространства – движениям, подобиям и аффинным преобразованиям. Книга включает около 500 задач для самостоятельного решения с указаниями и ответами. Книга может быть использована для внеклассной работы с учащимися, для самообразования учителей, для спецкурсов и спецсеминаров по элементарной геометрии в педагогических вузах.

Избранные задачи теории динамических систем

Ю. С. Ильяшенко

Теория динамических систем делится на две части: многомерные системы (царство хаоса) и маломерные (царство порядка). К первой, более обширной области относятся эпиморфизмы в любой размерности, диффеоморфизмы в размерности 2 и потоки в размерности три и выше. Ко второй относятся диффеоморфизмы окружности и векторные поля на плоскости, вещественной и комплексной. Предлагаемая книга посвящена обеим темам. В теории многомерных систем она посвящена отысканию новых локально типичных свойств динамических систем, и прежде всего исследованию аттракторов. Во второй части нас интересуют полиномиальные векторные поля на вещественной и комплексной плоскости. Принятый в этой книге подход основан на связи между случайными и детерминированными динамическими системами. Книга может служить введением в предмет. Каждая тема описана в ней эскизно, зато читатель может войти в курс дела быстрее, чем это позволяет любая монография.

Глобус. Общематематический семинар. Выпуск 4

Сборник статей

Цель семинара «Глобус» – по возможности восстановить единство математики. Семинар рассчитан на математиков всех специальностей, аспирантов и студентов. Четвертый выпуск включает доклады С. Н. Артемова, А. М. Бородина, С. Г. Влэдуца, В. И. Данилова, Е. Б. Дынкина, Г. Л. Литвинова, Р. А. Минлоса, А. Н. Рыбко, В. В. Сергановой, М. В. Финкельберга, О. В. Шварцмана, В. В. Шехтмана, М. А. Шубина и Д. Б. Фукса.

Геометрические свойства кривых второго порядка

А. А. Заславский

Книга посвящена тем свойствам коник (кривых второго порядка), которые формулируются и доказываются на чисто геометрическом языке (проективном или метрическом). Изложение начинается с элементарных фактов и доведено до весьма нетривиальных результатов, классических и современных. Глава 2 является содержательным дополнением к традиционному курсу евклидовой планиметрии, расширяющим математический кругозор читателя. Авторы стремились показать преимущества чисто геометрических методов, сочетающих наглядность и логическую прозрачность. В книге имеется значительное количество задач, решение которых тренирует геометрическое мышление и интуицию. Книга будет интересна школьникам старших классов, студентам физико-математических специальностей, преподавателям и широкому кругу любителей математики.

Тысяча задач Международного математического Турнира городов

А. К. Толпыго

Турнир городов – крупнейшее математическое соревнование школьников, проводящееся вот уже 30 лет. Его уникальность в том, что он доступен школьникам всего мира. Трудность задач самая разнообразная – от совсем легких до исключительно трудных, которые иной раз удавалось решить только 1-2 участникам. В настоящей книге представлены все задачи 30 турниров с краткими указаниями. Автор – один из «отцов-основателей» Турнира и его бессменный организатор на протяжении всех этих лет.

Гиперболичность по Кобаяси. Некоторые алгебро-геометрические аспекты

Е. Ю. Америк

Брошюра представляет собой записки цикла лекций для старшекурсников и аспирантов, прочитанных автором в Независимом московском университете осенью 2006 года. Обсуждается понятие гиперболичности по Кобаяси в алгебро-геометрическом контексте; в частности, много внимания уделяется вопросам (не)существования рациональных, эллиптических и целых кривых на алгебраических многообразиях (на эту тему представлены результаты Вуазен, Богомолова, Макквиллена, Демайи и др.).

Абелевы многообразия, тэта-функции и преобразование Фурье

А. Е. Полищук

Книга является современной монографией по теории абелевых многообразий (как над комплексными числами, так и над произвольным полем). Освещены, в частности, такие вопросы, как тэта-функции, связь с группой Гейзенберга, преобразование Фурье-Мукаи, теория якобианов кривых. Для научных работников, аспирантов, студентов старших курсов.