Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.
This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns. This text identifies the social processes generating these networks and how networks have evolved. Reviews: «this book is easy to read and entertaining, and much can be learned from it. Even if you know just about everything about large-scale and temporal networks, the book is a worthwhile read; you will learn a lot about SNA literature, patents, the US Supreme Court, and European soccer.» (Social Networks) «a clear and accessible textbook, balancing symbolic maths, code, and visual explanations. The authors’ enthusiasm for the subject matter makes it enjoyable to read» (JASSS)
A practical guide for determining the evidential value of physicochemical data Microtraces of various materials (e.g. glass, paint, fibres, and petroleum products) are routinely subjected to physicochemical examination by forensic experts, whose role is to evaluate such physicochemical data in the context of the prosecution and defence propositions. Such examinations return various kinds of information, including quantitative data. From the forensic point of view, the most suitable way to evaluate evidence is the likelihood ratio. This book provides a collection of recent approaches to the determination of likelihood ratios and describes suitable software, with documentation and examples of their use in practice. The statistical computing and graphics software environment R, pre-computed Bayesian networks using Hugin Researcher and a new package, calcuLatoR, for the computation of likelihood ratios are all explored. Statistical Analysis in Forensic Science will provide an invaluable practical guide for forensic experts and practitioners, forensic statisticians, analytical chemists, and chemometricians. Key features include: Description of the physicochemical analysis of forensic trace evidence. Detailed description of likelihood ratio models for determining the evidential value of multivariate physicochemical data. Detailed description of methods, such as empirical cross-entropy plots, for assessing the performance of likelihood ratio-based methods for evidence evaluation. Routines written using the open-source R software, as well as Hugin Researcher and calcuLatoR. Practical examples and recommendations for the use of all these methods in practice.
A comprehensive examination of high-dimensional analysis of multivariate methods and their real-world applications Multivariate Statistics: High-Dimensional and Large-Sample Approximations is the first book of its kind to explore how classical multivariate methods can be revised and used in place of conventional statistical tools. Written by prominent researchers in the field, the book focuses on high-dimensional and large-scale approximations and details the many basic multivariate methods used to achieve high levels of accuracy. The authors begin with a fundamental presentation of the basic tools and exact distributional results of multivariate statistics, and, in addition, the derivations of most distributional results are provided. Statistical methods for high-dimensional data, such as curve data, spectra, images, and DNA microarrays, are discussed. Bootstrap approximations from a methodological point of view, theoretical accuracies in MANOVA tests, and model selection criteria are also presented. Subsequent chapters feature additional topical coverage including: High-dimensional approximations of various statistics High-dimensional statistical methods Approximations with computable error bound Selection of variables based on model selection approach Statistics with error bounds and their appearance in discriminant analysis, growth curve models, generalized linear models, profile analysis, and multiple comparison Each chapter provides real-world applications and thorough analyses of the real data. In addition, approximation formulas found throughout the book are a useful tool for both practical and theoretical statisticians, and basic results on exact distributions in multivariate analysis are included in a comprehensive, yet accessible, format. Multivariate Statistics is an excellent book for courses on probability theory in statistics at the graduate level. It is also an essential reference for both practical and theoretical statisticians who are interested in multivariate analysis and who would benefit from learning the applications of analytical probabilistic methods in statistics.
A one-of-a-kind compilation of modern statistical methods designed to support and advance research across the social sciences Statistics in the Social Sciences: Current Methodological Developments presents new and exciting statistical methodologies to help advance research and data analysis across the many disciplines in the social sciences. Quantitative methods in various subfields, from psychology to economics, are under demand for constant development and refinement. This volume features invited overview papers, as well as original research presented at the Sixth Annual Winemiller Conference: Methodological Developments of Statistics in the Social Sciences, an international meeting that focused on fostering collaboration among mathematical statisticians and social science researchers. The book provides an accessible and insightful look at modern approaches to identifying and describing current, effective methodologies that ultimately add value to various fields of social science research. With contributions from leading international experts on the topic, the book features in-depth coverage of modern quantitative social sciences topics, including: Correlation Structures Structural Equation Models and Recent Extensions Order-Constrained Proximity Matrix Representations Multi-objective and Multi-dimensional Scaling Differences in Bayesian and Non-Bayesian Inference Bootstrap Test of Shape Invariance across Distributions Statistical Software for the Social Sciences Statistics in the Social Sciences: Current Methodological Developments is an excellent supplement for graduate courses on social science statistics in both statistics departments and quantitative social sciences programs. It is also a valuable reference for researchers and practitioners in the fields of psychology, sociology, economics, and market research.
Insightful observations on common question evaluation methods and best practices for data collection in survey research Featuring contributions from leading researchers and academicians in the field of survey research, Question Evaluation Methods: Contributing to the Science of Data Quality sheds light on question response error and introduces an interdisciplinary, cross-method approach that is essential for advancing knowledge about data quality and ensuring the credibility of conclusions drawn from surveys and censuses. Offering a variety of expert analyses of question evaluation methods, the book provides recommendations and best practices for researchers working with data in the health and social sciences. Based on a workshop held at the National Center for Health Statistics (NCHS), this book presents and compares various question evaluation methods that are used in modern-day data collection and analysis. Each section includes an introduction to a method by a leading authority in the field, followed by responses from other experts that outline related strengths, weaknesses, and underlying assumptions. Topics covered include: Behavior coding Cognitive interviewing Item response theory Latent class analysis Split-sample experiments Multitrait-multimethod experiments Field-based data methods A concluding discussion identifies common themes across the presented material and their relevance to the future of survey methods, data analysis, and the production of Federal statistics. Together, the methods presented in this book offer researchers various scientific approaches to evaluating survey quality to ensure that the responses to these questions result in reliable, high-quality data. Question Evaluation Methods is a valuable supplement for courses on questionnaire design, survey methods, and evaluation methods at the upper-undergraduate and graduate levels. it also serves as a reference for government statisticians, survey methodologists, and researchers and practitioners who carry out survey research in the areas of the social and health sciences.
Mixed modelling is very useful, and easier than you think! Mixed modelling is now well established as a powerful approach to statistical data analysis. It is based on the recognition of random-effect terms in statistical models, leading to inferences and estimates that have much wider applicability and are more realistic than those otherwise obtained. Introduction to Mixed Modelling leads the reader into mixed modelling as a natural extension of two more familiar methods, regression analysis and analysis of variance. It provides practical guidance combined with a clear explanation of the underlying concepts. Like the first edition, this new edition shows diverse applications of mixed models, provides guidance on the identification of random-effect terms, and explains how to obtain and interpret best linear unbiased predictors (BLUPs). It also introduces several important new topics, including the following: Use of the software SAS, in addition to GenStat and R. Meta-analysis and the multiple testing problem. The Bayesian interpretation of mixed models. Including numerous practical exercises with solutions, this book provides an ideal introduction to mixed modelling for final year undergraduate students, postgraduate students and professional researchers. It will appeal to readers from a wide range of scientific disciplines including statistics, biology, bioinformatics, medicine, agriculture, engineering, economics, archaeology and geography. Praise for the first edition: “One of the main strengths of the text is the bridge it provides between traditional analysis of variance and regression models and the more recently developed class of mixed models…Each chapter is well-motivated by at least one carefully chosen example…demonstrating the broad applicability of mixed models in many different disciplines…most readers will likely learn something new, and those previously unfamiliar with mixed models will obtain a solid foundation on this topic.”—Kerrie Nelson University of South Carolina, in American Statistician, 2007
Assessment Methods in Statistical Education: An International Perspective provides a modern, international perspective on assessing students of statistics in higher education. It is a collection of contributions written by some of the leading figures in statistical education from around the world, drawing on their personal teaching experience and educational research. The book reflects the wide variety of disciplines, such as business, psychology and the health sciences, which include statistics teaching and assessment. The authors acknowledge the increasingly important role of technology in assessment, whether it be using the internet for accessing information and data sources or using software to construct and manage individualised or online assessments. Key Features: Presents successful assessment strategies, striking a balance between formative and summative assessment, individual and group work, take-away assignments and supervised tests. Assesses statistical thinking by questioning students’ ability to interpret and communicate the results of their analysis. Relates assessment to the real world by basing it on real data in an appropriate context. Provides a range of individualised assessment methods, including those that deter plagiarism and collusion by providing each student with a unique problem to solve or dataset to analyse. This book is essential reading for anyone involved in teaching statistics at tertiary level or interested in statistical education research.
Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines—linear algebra, abstract algebra, and number theory—into one comprehensive and fluid presentation, facilitating a deeper understanding of the topic and improving readers' retention of the main concepts. The book begins with an introduction to the elements of set theory. Next, the authors discuss matrices, determinants, and elements of field theory, including preliminary information related to integers and complex numbers. Subsequent chapters explore key ideas relating to linear algebra such as vector spaces, linear mapping, and bilinear forms. The book explores the development of the main ideas of algebraic structures and concludes with applications of algebraic ideas to number theory. Interesting applications are provided throughout to demonstrate the relevance of the discussed concepts. In addition, chapter exercises allow readers to test their comprehension of the presented material. Algebra and Number Theory is an excellent book for courses on linear algebra, abstract algebra, and number theory at the upper-undergraduate level. It is also a valuable reference for researchers working in different fields of mathematics, computer science, and engineering as well as for individuals preparing for a career in mathematics education.
Latent Variable Models and Factor Analysis provides a comprehensive and unified approach to factor analysis and latent variable modeling from a statistical perspective. This book presents a general framework to enable the derivation of the commonly used models, along with updated numerical examples. Nature and interpretation of a latent variable is also introduced along with related techniques for investigating dependency. This book: Provides a unified approach showing how such apparently diverse methods as Latent Class Analysis and Factor Analysis are actually members of the same family. Presents new material on ordered manifest variables, MCMC methods, non-linear models as well as a new chapter on related techniques for investigating dependency. Includes new sections on structural equation models (SEM) and Markov Chain Monte Carlo methods for parameter estimation, along with new illustrative examples. Looks at recent developments on goodness-of-fit test statistics and on non-linear models and models with mixed latent variables, both categorical and continuous. No prior acquaintance with latent variable modelling is pre-supposed but a broad understanding of statistical theory will make it easier to see the approach in its proper perspective. Applied statisticians, psychometricians, medical statisticians, biostatisticians, economists and social science researchers will benefit from this book.