Graphical models are of increasing importance in applied statistics, and in particular in data mining. Providing a self-contained introduction and overview to learning relational, probabilistic, and possibilistic networks from data, this second edition of Graphical Models is thoroughly updated to include the latest research in this burgeoning field, including a new chapter on visualization. The text provides graduate students, and researchers with all the necessary background material, including modelling under uncertainty, decomposition of distributions, graphical representation of distributions, and applications relating to graphical models and problems for further research.
Everyday we face decisions that carry an element of risk and uncertainty. The ability to analyze, predict, and prepare for the level of risk entailed by these decisions is, therefore, one of the most constant and vital skills needed for analysts, scientists and managers. Risk analysis can be defined as a systematic use of information to identify hazards, threats and opportunities, as well as their causes and consequences, and then express risk. In order to successfully develop such a systematic use of information, those analyzing the risk need to understand the fundamental concepts of risk analysis and be proficient in a variety of methods and techniques. Risk Analysis adopts a practical, predictive approach and guides the reader through a number of applications. Risk Analysis: Provides an accessible and concise guide to performing risk analysis in a wide variety of fields, with minimal prior knowledge required. Adopts a broad perspective on risk, with focus on predictions and highlighting uncertainties beyond expected values and probabilities, allowing a more flexible approach than traditional statistical analysis. Acknowledges that expected values and probabilities could produce poor predictions – surprises may occur. Emphasizes the planning and use of risk analyses, rather than just the risk analysis methods and techniques, including the statistical analysis tools. Features many real-life case studies from a variety of applications and practical industry problems, including areas such as security, business and economy, transport, oil & gas and ICT (Information and Communication Technology). Forms an ideal companion volume to Aven’s previous Wiley text Foundations of Risk Analysis. Professor Aven’s previous book Foundations of Risk Analysis presented and discussed several risk analysis approaches and recommended a predictive approach. This new text expands upon this predictive approach, exploring further the risk analysis principles, concepts, methods and models in an applied format. This book provides a useful and practical guide to decision-making, aimed at professionals within the risk analysis and risk management field.
Text Mining: Applications and Theory presents the state-of-the-art algorithms for text mining from both the academic and industrial perspectives. The contributors span several countries and scientific domains: universities, industrial corporations, and government laboratories, and demonstrate the use of techniques from machine learning, knowledge discovery, natural language processing and information retrieval to design computational models for automated text analysis and mining. This volume demonstrates how advancements in the fields of applied mathematics, computer science, machine learning, and natural language processing can collectively capture, classify, and interpret words and their contexts. As suggested in the preface, text mining is needed when “words are not enough.” This book: Provides state-of-the-art algorithms and techniques for critical tasks in text mining applications, such as clustering, classification, anomaly and trend detection, and stream analysis. Presents a survey of text visualization techniques and looks at the multilingual text classification problem. Discusses the issue of cybercrime associated with chatrooms. Features advances in visual analytics and machine learning along with illustrative examples. Is accompanied by a supporting website featuring datasets. Applied mathematicians, statisticians, practitioners and students in computer science, bioinformatics and engineering will find this book extremely useful.
The first part of this book is devoted to methods seeking relevant dimensions of data. The variables thus obtained provide a synthetic description which often results in a graphical representation of the data. After a general presentation of the discriminating analysis, the second part is devoted to clustering methods which constitute another method, often complementary to the methods described in the first part, to synthesize and to analyze the data. The book concludes by examining the links existing between data mining and data analysis.
Discover the latest developments and current practices in survey sampling Survey sampling is an important component of research in many fields, and as the importance of survey sampling continues to grow, sophisticated sampling techniques that are both economical and scientifically reliable are essential to planning statistical research and the design of experiments. Sampling Statistics presents estimation techniques and sampling concepts to facilitate the application of model-based procedures to survey samples. The book begins with an introduction to standard probability sampling concepts, which provides the foundation for studying samples selected from a finite population. The development of the theory of complex sampling methods is detailed, and subsequent chapters explore the construction of estimators, sample design, replication variance estimation, and procedures such as nonresponse adjustment and small area estimation where models play a key role. A final chapter covers analytic studies in which survey data are used for the estimation of parameters for a subject matter model. The author draws upon his extensive experience with survey samples in the book's numerous examples. Both the production of «general use» databases and the analytic study of a limited number of characteristics are discussed. Exercises at the end of each chapter allow readers to test their comprehension of the presented concepts and techniques, and the references provide further resources for study. Sampling Statistics is an ideal book for courses in survey sampling at the graduate level. It is also a valuable reference for practicing statisticians who analyze survey data or are involved in the design of sample surveys.
Environmental statistics is a rapidly growing discipline that is important not only as a division of professional and academic statistics, but also in the accumulation of data on environmental effects and in the formulation of environmental policy by government agencies. This book features contributions from policy makers, scientists actively involved in collection of data, and professional, academic and government statisticians. These explore the interfaces between the different areas of application of environmental statistics and consider the future applications of methods arising from this discipline. Some of the chapters deal specifically with environmental models and methods. Here, the contributors explain specialized statistical techniques that have been developed for analysing environmental data and mathematical models that have been applied to the problem of integrating large amounts of environmental data into a coherent picture of particular environmental systems. Several of the contributions deal specifically with the problems involved in co-ordinating data collection over large geographical areas and over many dimensions of measurement. Finally, the book discusses the problems of formulating specific environmental policies given the nature of the information that has been made available using environmental statistical methods.
A rigorous, yet accessible, introduction to essential topics in mathematical finance Presented as a course on the topic, Quantitative Finance traces the evolution of financial theory and provides an overview of core topics associated with financial investments. With its thorough explanations and use of real-world examples, this book carefully outlines instructions and techniques for working with essential topics found within quantitative finance including portfolio theory, pricing of derivatives, decision theory, and the empirical behavior of prices. The author begins with introductory chapters on mathematical analysis and probability theory, which provide the needed tools for modeling portfolio choice and pricing in discrete time. Next, a review of the basic arithmetic of compounding as well as the relationships that exist among bond prices and spot and forward interest rates is presented.? Additional topics covered include: Dividend discount models Markowitz mean-variance theory The Capital Asset Pricing Model Static?portfolio theory based on the expected-utility paradigm Familiar probability models for marginal distributions of returns and the dynamic behavior of security prices The final chapters of the book delve into the paradigms of pricing and present the application of martingale pricing in advanced models of price dynamics. Also included is a step-by-step discussion on the use of Fourier methods to solve for arbitrage-free prices when underlying price dynamics are modeled in realistic, but complex ways. Throughout the book, the author presents insight on current approaches along with comments on the unique difficulties that exist in the study of financial markets. These reflections illustrate the evolving nature of the financial field and help readers develop analytical techniques and tools to apply in their everyday work. Exercises at the end of most chapters progress in difficulty, and selected worked-out solutions are available in the appendix. In addition, numerous empirical projects utilize MATLAB® and Minitab® to demonstrate the mathematical tools of finance for modeling the behavior of prices and markets. Data sets that accompany these projects can be found via the book's FTP site. Quantitative Finance is an excellent book for courses in quantitative finance or financial engineering at the upper-undergraduate and graduate levels. It is also a valuable resource for practitioners in related fields including engineering, finance, and economics.
A new edition of the classic, groundbreaking book on robust statistics Over twenty-five years after the publication of its predecessor, Robust Statistics, Second Edition continues to provide an authoritative and systematic treatment of the topic. This new edition has been thoroughly updated and expanded to reflect the latest advances in the field while also outlining the established theory and applications for building a solid foundation in robust statistics for both the theoretical and the applied statistician. A comprehensive introduction and discussion on the formal mathematical background behind qualitative and quantitative robustness is provided, and subsequent chapters delve into basic types of scale estimates, asymptotic minimax theory, regression, robust covariance, and robust design. In addition to an extended treatment of robust regression, the Second Edition features four new chapters covering: Robust Tests Small Sample Asymptotics Breakdown Point Bayesian Robustness An expanded treatment of robust regression and pseudo-values is also featured, and concepts, rather than mathematical completeness, are stressed in every discussion. Selected numerical algorithms for computing robust estimates and convergence proofs are provided throughout the book, along with quantitative robustness information for a variety of estimates. A General Remarks section appears at the beginning of each chapter and provides readers with ample motivation for working with the presented methods and techniques. Robust Statistics, Second Edition is an ideal book for graduate-level courses on the topic. It also serves as a valuable reference for researchers and practitioners who wish to study the statistical research associated with robust statistics.
An insightful approach to the analysis of variance in the study of linear models Linear Models explores the theory of linear models and the dynamic relationships that these models have with Analysis of Variance (ANOVA), experimental design, and random and mixed-model effects. This one-of-a-kind book emphasizes an approach that clearly explains the distribution theory of linear models and experimental design starting from basic mathematical concepts in linear algebra. The author begins with a presentation of the classic fixed-effects linear model and goes on to illustrate eight common linear models, along with the value of their use in statistics. From this foundation, subsequent chapters introduce concepts pertaining to the linear model, starting with vector space theory and the theory of least-squares estimation. An outline of the Helmert matrix is also presented, along with a thorough explanation of how the ANOVA is created in both typical two-way and higher layout designs, ultimately revealing the distribution theory. Other important topics covered include: Vector space theory The theory of least squares estimation Gauss-Markov theorem Kronecker products Diagnostic and robust methods for linear models Likelihood approaches to estimation A discussion of Bayesian theory is also included for purposes of comparison and contrast, and numerous illustrative exercises assist the reader with uncovering the nature of the models, using both classic and new data sets. Requiring only a working knowledge of basic probability and statistical inference, Linear Models is a valuable book for courses on linear models at the upper-undergraduate and graduate levels. It is also an excellent reference for practitioners who use linear models to conduct research in the fields of econometrics, psychology, sociology, biology, and agriculture.
Comprehensive coverage of classical and modern methods of biostatistics Biostatistical Methods focuses on the assessment of risks and relative risks on the basis of clinical investigations. It develops basic concepts and derives biostatistical methods through both the application of classical mathematical statistical tools and more modern likelihood-based theories. The first half of the book presents methods for the analysis of single and multiple 2x2 tables for cross-sectional, prospective, and retrospective (case-control) sampling, with and without matching using fixed and two-stage random effects models. The text then moves on to present a more modern likelihood- or model-based approach, which includes unconditional and conditional logistic regression; the analysis of count data and the Poisson regression model; and the analysis of event time data, including the proportional hazards and multiplicative intensity models. The book contains a technical appendix that presents the core mathematical statistical theory used for the development of classical and modern statistical methods. Biostatistical Methods: The Assessment of Relative Risks: * Presents modern biostatistical methods that are generalizations of the classical methods discussed * Emphasizes derivations, not just cookbook methods * Provides copious reference citations for further reading * Includes extensive problem sets * Employs case studies to illustrate application of methods * Illustrates all methods using the Statistical Analysis System(r) (SAS) Supplemented with numerous graphs, charts, and tables as well as a Web site for larger data sets and exercises, Biostatistical Methods: The Assessment of Relative Risks is an excellent guide for graduate-level students in biostatistics and an invaluable reference for biostatisticians, applied statisticians, and epidemiologists.